首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The trap levels in nominally undoped Ga3InSe4 crystals were investigated in the temperature range of 10-300 K using the thermally stimulated currents technique. The study of trap levels was accomplished by the measurements of current flowing along the c-axis of the crystal. During the experiments we utilized a constant heating rate of 0.8 K/s. Experimental evidence is found for one hole trapping center in the crystal with activation energy of 62 meV. The analysis of the experimental TSC curve gave reasonable results under the model that assumes slow retrapping. The capture cross-section of the trap was determined as 1.0×10−25 cm2 with concentration of 1.4×1017 cm−3.  相似文献   

2.
Charge carrier traps in as-grown TlGaSeS layered single crystals were studied using thermally stimulated current measurements. The investigations were performed in temperatures ranging from 10 to 100 K. The experimental evidences were found for the presence of one shallow hole trapping center in TlGaSeS, located at 12 meV from the valence band. The trap parameters have been calculated using various methods of analysis, and these agree well with each other. Its capture cross-section and concentration have been found to be 8.9 × 10−26 cm2 and 2.0 × 1014 cm−3, respectively. Analysis of the thermally stimulated current data at different light excitation temperatures leads to a value of 19 meV/decade for the shallow hole traps distribution.  相似文献   

3.
The effect of additives (Sb and Ag) on a.c. conductivity and dielectric properties of Se70Te30 glassy alloy at temperature range 300-350 K and frequency range 1 kHz-5 MHz has been studied. Experimental results indicate that a.c. conductivity and dielectric parameters depend on temperature, frequency and the impurity incorporated in Se-Te glassy system. The a.c. conductivity in the aforesaid frequency range is found to obey the ωs law. A strong dependence of a.c. conductivity and exponent s in the entire temperature and frequency range contradicts quantum-mechanical tunneling (QMT) model and can be interpreted in terms of the correlated barrier hopping (CBH) model. The temperature and frequency dependence of the dielectric parameters are also studied and it is found that the results agrees by the theory of hopping of charge carriers over potential barrier as suggested by Elliott in chalcogenide glasses. The change in the dielectric parameters with the opposite influence of the replacement of Te by Sb on the one hand, and by Ag, on the other hand is being correlated by the nature of covalent character of the studied composition and with the change in density of defect states.  相似文献   

4.
For the compounds FeGa2S4 and NiGa2S4 band structure calculations have been performed by the ab initio plane wave pseudo-potential method. The valence charge density distribution points to an ionic type of chemical bonding between the transition metal atoms and the ligand atoms. Two models for the pseudo-potentials are used to calculate the band structures: (a) only s and p electrons and (b) also the d-shells of the transition metal atoms are included in the pseudo-potentials. The differences between these two cases of band structures are discussed. Energy gap formation peculiarities are analysed for both crystals. Zak's elementary energy band concept is demonstrated for the energy spectra of the considered crystals.  相似文献   

5.
Variable angle spectroscopic ellipsometry has been applied to characterize the optical constants of bulk Cu(In0.7Ga0.3)5Se8 and Cu(In0.4Ga0.6)5Se8 crystals grown by the Bridgman method. The spectra were measured at room temperature over the energy range 0.8-4.4 eV. Adachi’s model was used to calculate the dielectric functions as well as the spectral dependence of complex refractive index, absorption coefficient, and normal-incidence reflectivity. The calculated data are in good agreement with the experimental ones over the entire range of photon energies. The parameters such as strength, threshold energy, and broadening, corresponding to the E0, E1A, and E1B interband transitions, have been determined using the simulated annealing algorithm.  相似文献   

6.
Bismuth selenotelluride (Bi2(Te0.9Se0.1)3) films were electrodeposited at constant current density from acidic aqueous solutions with Arabic gum in order to produce thin films for miniaturized thermoelectric devices. X-ray fluorescence spectroscopy determined film compositions. X-ray diffraction pattern shows that the films as deposited are polycrystalline, isostructural to Bi2Te3 and covered by crystallites. Mueller-matrix analysis reveals that the electroplated layers are optically like an isotropic medium. Their pseudo-dielectric functions were determined using mid-infrared spectroscopic ellipsometry. Tauc-Lorentz combined with Drude dispersion relations were successfully used. The energy band gap Eg was found to be about 0.15 eV. Moreover, the fundamental absorption edge was described by an indirect optical band-to-band transition. From Seebeck coefficient measurement, films exhibit n-type charge carrier and the value of thermoelectric power is about −40 μV/K.  相似文献   

7.
Bismuth sulfide (Bi2S3) and antimony sulfide (Sb2S3) nanorods were synthesized by hydrothermal method. The products were characterized by UV-vis spectrophotometer, X-ray powder diffraction (XRD) and transmission electron microscope (TEM). Bi2S3 and Sb2S3 nanorods were measured by Z-scan technique to investigate the third-order nonlinear optical (NLO) properties. The result of NLO measurements shows that the Bi2S3 and Sb2S3 nanorods have the behaviors of the third-order NLO properties of both NLO absorption and NLO refraction with self-focusing effects. The third-order NLO coefficient χ(3) of the Bi2S3 and Sb2S3 nanorods are 6.25×10−11 esu and 4.55×10−11 esu, respectively. The Sb2S3 and Bi2S3 nanorods with large third-order NLO coefficient are promising materials for applications in optical devices.  相似文献   

8.
A density functional-based method is used to investigate the structural, elastic and thermodynamic properties of the cubic spinel semiconductors MgIn2S4 and CdIn2S4 at different pressures and temperatures. Computed ground structural parameters are in good agreement with the available experimental data. Single-crystal elastic parameters are calculated for pressure up to 10 GPa and temperature up to 1200 K. The obtained elastic constants values satisfy the requirement of mechanical stability, indicating that MgIn2S4 and CdIn2S4 compounds could be stable in the investigated pressure range. Isotropic elastic parameters for ideal polycrystalline MgIn2S4 and CdIn2S4 aggregates are computed in the framework of the Voigt–Reuss–Hill approximation. Pressure and thermal effects on some macroscopic properties such as lattice constant, volume expansion coefficient and heat capacities are predicted using the quasi-harmonic Debye model in which the lattice vibrations are taken into account.  相似文献   

9.
The optical absorption of the As-prepared and annealed As45.2Te46.6In8.2 thin films are studied. Films annealed at temperatures higher than 453 K show a decrease in the optical energy gap (Eo). The value of Eo increases from 1.9 to 2.43 eV with increasing thickness of the As-prepared films from 60 to 140 nm. The effect of thickness on high frequency dielectric constant (?) and carrier concentration (N) is also studied. The crystalline structures of the As45.2Te46.6In8.2 thin films resulting from heat treatment of the As-prepared film at different elevated temperatures is studied by X-ray diffraction. An amorphous-crystalline transformation is observed after annealing at temperatures higher than 453 K. The electrical conductivity at low temperatures is found due to the electrons transport by hopping among the localized states near the Fermi level. With annealing the films at temperatures higher than 473 K (the crystallization onset temperature) for 1 h, the electrical conductivity increases and the activation energy decreases, which can be attributed to the amorphous-crystalline transformations.  相似文献   

10.
In2S3 layers have been grown by close-spaced evaporation of pre-synthesized In2S3 powder from its constituent elements. The layers were deposited on glass substrates at temperatures in the range, 200–350 °C. The effect of substrate temperature on composition, structure, morphology, electrical and optical properties of the as-grown indium sulfide films has been studied. The synthesized powder exhibited cubic structure with a grain size of 63.92 nm and S/In ratio of 1.01. The films grown at 200 °C were amorphous in nature while its crystallinity increased with the increase of substrate temperature to 300 °C. The films exhibited pure tetragonal β-In2S3 phase at the substrate temperature of 350 °C. The surface morphological analysis revealed that the films grown at 300 °C had an average roughness of 1.43 nm. These films showed a S/In ratio of 0.98 and a lower electrical resistivity of 1.28 × 103 Ω cm. The optical band gap was found to be direct and the layers grown at 300 °C showed a higher optical transmittance of 78% and an energy band gap of 2.49 eV.  相似文献   

11.
The characteristics of high-temperature ionic thermocurrent (HT ITC) in CaF2 doped with different sodium concentrations were studied by the Teflon-insulated electrode ITC method. It was shown that, with increasing sodium concentration, the HT ITC band moved toward a Na+-FV dipole band with a peak at 162 K. The results of analyses of the HT ITC spectra using an equivalent electric circuit proved that the activation energy of space charge migration related to HT ITC was also strongly dependent on the doped sodium concentrations if varied from 0.94 to 0.46 eV with increasing sodium concentration in our ITC study. In addition, the broadening of the Na+-FV dipole band was observed in 3 nominal mole% NaF-doped CaF2, which was accompanied by a considerable decrease of the activation energy from 0.46 to 0.29 eV without showing marked temperature shifts of the peak ITC bands.  相似文献   

12.
Epitaxial layers of the quaternary compound Cu(In,Ga)S2 and the ternary compound CuInS2 were grown on Si(111) substrates via Molecular Beam Epitaxy. The layers were investigated for their morphological and structural properties using Rutherford backscattering spectroscopy, atomic force microscopy, reflection high-energy electron diffraction and X-Ray diffraction. Furthermore, complete solar cell devices were processed from these layers and their photovoltaic properties were investigated by means of I(U)-curves under illumination. Thus, efficiencies up to η=3.2% were achieved. The comparatively low performance of the solar cell devices is attributed to certain heterogeneities of the samples as a result of the growth process.  相似文献   

13.
The electronic structure and the optical properties of In6S7 crystal are calculated by the first-principles full-potential linearized augmented plane wave method (FP-LAPW) using density functional theory (DFT) in its generalized gradient approximation (GGA). The calculated band structure shows that the In6S7 is a semiconductor with a direct band gap in good agreement with experimental studies. Furthermore, the dielectric tensor and the optical properties, such as absorption coefficient, refractive index, extinction coefficient, energy-loss spectrum and reflectivity, are derived and analyzed in the study.  相似文献   

14.
This paper presents a study of bulk samples synthesized of the Ag1−xCuxInSe2 semiconductor system. Structural, thermal and electrical properties, as a function of the nominal composition (Cu content) x=0.0, 0.2, 0.4, 0.6, 0.8, and 1.0 were studied. The influence of x on parameters such as melting temperature, solid phase transition temperature, lattice parameters, bond lengths, crystallite size t (coherent domain), electrical resistivity, electrical mobility and majority carrier concentration was analyzed. The electrical parameters are analyzed at room temperature. In general, it is observed that the properties of the Ag1−xCuxInSe2 system for x≤0.4 are dominated by n-AgInSe2, while for x>0.4, these are in the domain of p-CuInSe2. The crystallite size t in the whole composition range (x) is of the order of the nanoparticles. Secondary phases (CuSe, Ag2Se and InSe) in small proportion were identified by XRD and DTA.  相似文献   

15.
Hexagonal ZnIn2S4 photocatalysts with different morphology and crystallinity (micro-structures) were prepared in aqueous-, methanol- and ethylene glycol-mediated conditions via a solvothermal/hydrothermal method. The aqueous- and methanol-mediated ZnIn2S4 presented to be Flowering-Cherry-like microsphere, while the ethylene glycol-mediated ZnIn2S4 presented to be micro-cluster. In comparison with two other products, aqueous-mediated ZnIn2S4 possessed the best crystallinity (micro-structure), which resulted in the highest photocatalytic activity for hydrogen evolution under visible-light irradiation. Additionally, aqueous-mediated ZnIn2S4 was found to be more stable than the other two ZnIn2S4 photocatalysts while undergoing the photocatalytic process. During the photocatalytic reaction, the average rates for hydrogen production over aqueous-, methanol- and ethylene glycol-mediated ZnIn2S4 were determined to be 27.3, 12.4 and 9.1 μmol h-1, respectively, in the present photocatalytic systems.  相似文献   

16.
Exciton spectra are studied in CuGaXIn1−XS2 solid solutions by means of photoreflectivity and wavelength modulation spectroscopy at liquid nitrogen temperature. The exciton parameters, dielectric constants, and free carrier effective masses are deduced from experimental spectra by calculations in the framework of a model taking into account the spatial dispersion and the presence of a dead-layer. The crystal field and spin orbit valence band splitting is calculated as a function of X taking into account the energy position of excitonic lines. The energy band structure of CuGaXIn1−XS2 and CuGaXIn1−XSe2 compounds is derived from optical spectra at photon energies higher than the fundamental band gap. The energies of optical transitions are tabulated for X values from 0 to 1.  相似文献   

17.
The pure SrNb2O6 powders were prepared at 1400 °C by a conventional solid-state method and characterized by X-ray powder diffraction and UV-vis diffuse reflection spectrum. The powders of Nb2O5 and SrNb2O6 were ball-milled together and annealed to form the Nb2O5/SrNb2O6 composite. Photocatalytic activities of the composites were investigated on the degradation of methyl orange. The results show that the proportion of Nb2O5 to SrNb2O6 and the annealing temperature greatly influence the photocatalytic activities of the composites. The best photocatalytic activity occurs when the weight proportion of Nb2O5 to SrNb2O6 is 30% and the annealing temperature is 600 °C. The tremendously enhanced photocatalytic activity of the Nb2O5/SrNb2O6 composite compared to Nb2O5 or SrNb2O6 is ascribed to the heterojunction effect taking place at the interface between particles of Nb2O5 and SrNb2O6. The powders also show a higher photocatalytic activity than commercial anatase TiO2.  相似文献   

18.
Transport properties (resistivity, thermal conductivity, and Seebeck coefficient) and sound velocities have been determined for the skutterudite Ce0.8Fe3CoSb12.1 with pressure up to 14 GPa. From these measurements, high pressure anomalous features were found in all transport properties. By correlating these with results from previous x-ray work, it has been determined that there is likely an electronic topological transition in this material induced by pressure. This is possibly due to the known pressure variation of valence in the void-filling Ce atom and has been found to induce an improved figure of merit at higher pressures, which shows a nearly two-fold increase with applied pressure. At higher pressures, it was determined that this anomalous behavior is suppressed and is possibly induced by insertion of Sb from the cage into the remaining central voids of the structure, similar to that seen in the CoSb3 parent compound.  相似文献   

19.
The absorption edge of undoped Tl2Ga2S3Se crystals have been studied through transmission and reflection measurements in the wavelength range 440–1100 nm and in the temperature range 10–300 K. The absorption edge was observed to shift toward lower energy values with increasing temperature. As a result, the rate of the indirect band gap variation with temperature γ=−2.6×10−4 eV/K and the absolute zero value of the band gap energy Egi(0)=2.42 eV were obtained.  相似文献   

20.
An oxide semiconductor Ca2NiWO6, with double-perovskite crystal structure, was synthesized by solid-state reaction method. The compound Ca2NiWO6 was characterized by X-ray diffraction, UV-visible diffuse reflectance, and photoluminescence. The photocatalytic properties of the compound for water splitting were investigated under UV and visible light irradiation. The results showed H2 evolution was not observed over the compound under visible light irradiation (λ>420 nm) with a 300 W xenon arc lamp when using methanol (CH3OH) as electron donor, although the compound was responsive to visible light region. Based on the experimental results, a possible band structure was proposed through theoretical calculation of the electronic structure by using the full potential-linearized augmented plane wave (F-LAPW). The band structure and photocatalytic properties were attributed to the special crystal and electronic structures. Due to the oxygen vacancies in the compound, which worked as electron-hole recombination centers, the photocatalytic activity of the compound was low.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号