首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 282 毫秒
1.
Prussian blue analogue FeII1.1CrIIx[CrIII(CN)6]0.6−x·nH2O nanowires were synthesized by electrodeposition. The magnetic properties investigation indicates that the nanowires exhibit cluster spin-glass behavior, which undergoes a magnetic transition to a frozen state below about 62 K. Spin disorder arising from reduced coordination and broken exchange bonds between spin centers due to the structural defects may be the reason that causes the spin-glass freezing behavior. The negative magnetization observed at temperature lower than the compensation temperature (Tcomp∼43 K) at a field of 10 Oe may be due to the different temperature dependences of the ferromagnetic site Fe-Cr and antiferromagnetic site Cr-Cr.  相似文献   

2.
Magnetic susceptibility χ measurements in the range from 2 to 300 K were carried out on samples of the Cu2FeSnSe4 and Cu2MnSnSe4 compounds. It was found that Cu2FeSnSe4 was antiferromagnetic showing ideal Curie-Weiss behavior with a Néel temperature TN of about 19 K and Curie-Weiss temperature θ=−200 K, while for Cu2MnSnSe4 the behavior was spin-glass with a freezing temperature Tf of about 22 K and Curie-Weiss temperature θ=−25 K. The spin-glass order parameter q(T), determined from the susceptibility data, was found to be in agreement with the prediction of conventional spin-glass theory.  相似文献   

3.
Comparative crystal structure and magnetic properties studies have been conducted on quaternary powder spinel samples LiMn1.82Cr0.18O4 obtained by two different synthesis methods, glycine-nitrate (GN) and ultrasonic spray-pyrolysis (SP). Although both samples possess the same spinel structure of the cubic space group Fd3¯m, their low-temperature magnetic properties display significant differences. While the SP sample undergoes only spin-glass transition at the freezing temperature Tf=20 K, the GN sample possesses more complicated low-temperature magnetic behavior of the reentrant spin-glass type with the Néel temperature TN=42 K and freezing temperature Tf=22 K. High-temperature magnetic susceptibility of both samples is of the Curie–Weiss type with the effective magnetic moments in agreement with the nominal compositions. This fact together with the results of the chemical analysis discards the existence of the diversity in chemical compositions as a possible cause for the observed differences in the low-temperature magnetism. On the other hand, the crystal structure analysis done by the Rietveld refinement of the X-ray powder diffraction data points to the strong influence of the cation distribution on the ground-state magnetism of these systems. An explanation of this influence is proposed within the framework of a collective Jahn–Teller effect.  相似文献   

4.
Magnetic interparticle interactions compete with the magnetic blocking of ultrafine magnetic nanoparticles. We have prepared maghemite (γ-Fe2O3) nanoparticles by microwave plasma synthesis as a loose powder and in compacted form. In ZFC/FC measurements, blocking temperature of the compacted sample C is larger than that of the powder sample P. The frequency dependence of AC susceptibility of the sample C shows a large shift of blocking temperature with increasing frequency. Vogel-Fulcher law gives a large value of T0 for the sample C. To get evidence of a possible spin-glass freezing in both samples, scaling law fitting is applied to the AC susceptibility data. The value of the exponent (zv) of the critical slowing down dynamics fits to the spin-glass regime for both samples. For the sample P, spin-glass freezing occurs on the surface of individual nanoparticles, while in the sample C surface spin-glass freezing is concomitant with a superspin-glass formation as a consequence of coupling between particles. The sample C also shows an enhancement of coercivity due to dipolar interactions among the nanoparticles. Exchange interactions are attributed only to touching nanoparticles across their interfaces. All these measurements indicate the presence of strong interparticle dipolar interactions in the compacted sample C.  相似文献   

5.
Time dependence of thermoremanent magnetization (TRM) in a new spin-glass, Rb2Mn(1-x)CrxCl4 is measured at temperatures below the freezing temperature. The result shows that long time behavior of the TRM obeys a power law, M(t) = Ct?A. It is shown from the analysis of the experiment that there is a possibility of the presence of a critical temperature.  相似文献   

6.
Results of the accurate magnetization measurements performed on the amorphous Fe10Ni70P14B6 alloy in the temperature range 20–77 K in fields upto 1 kOe are reported. The complex magnetic behaviour exhibited by this alloy has been analyzed to show that a ferromagnetic ordering, occuring on a localized microscopic scale at a temperature T0 very close to that given by the earlier Hall effect measurements, is accompanied by a superparamagnetic behaviour which below T0 causes at first a spin-glass freezing of the magnetic spins when they interact with one another on a long range scale and then a mictomagnetic freezing of the giant superparamagnetic clusters at a lower temperature as a result of exchange interaction between their moments and the frozen spin-glass matrix. In addition, the present results, besides providing a clear physical insight into the widely different ordering temperatures obtained for this alloy from previous Mössbauer and resistivity measurements, on one hand and from our magnetization measurements on the other, strongly suggest a magnetic origin for the observed resistivity-minimum phenomenon. In conclusion, the present alloy represents a composition in the amorphous (FexNi1?x)80P14B6 system well below the percolation limit.  相似文献   

7.
In the present study, spin-glass-like ordering has been observed in the spinel ZnFe2O4 ferrite. Field cooled (FC) and zero-field cooled (ZFC) DC magnetizations display divergence at low temperature, which indicates a frozen state with the freezing temperature of Tf=21 K. Frequency dependence of AC susceptibility measurement was performed on the sample. It shows a peak at around Tf, with the peak position shifting as a function of driving frequency, indicating a spin-glass-like transition of the sample. The sample shows a typical spin-glass behavior with a manifestation of non-equilibrium dynamics of the spin glass, such as aging, rejuvenation and memory effects. These experimental findings indicate that Zn-ferrite exhibits a spin-glass-like phase at low temperature and it is not canted antiferromagnetic.  相似文献   

8.
The exchange bias phenomenon has been investigated in multiferroic Eu0.75Y0.25MnO3. The material shows a weak ferromagnetism with cone spin configuration induced by external magnetic field below 30 K. Consequently, the electric polarization coming from the cycloid spin order below 30 K can be suppressed by external magnetic fields. The magnetic hysteresis loops after cooling in a magnetic field exhibit characteristics of exchange bias below the spin glassy freezing temperature (Tg)∼16 K. The exchange bias field, coercivity field, and remanent magnetization increase with increasing cooling magnetic field. The exchange bias effect is ascribed to the frozen uncompensated spins at the antiferromagnetism/weak ferromagnetism interfaces in the spin-glass like phase.  相似文献   

9.
Binary (ZnO)0.5(P2O5)0.5 glasses doped with Eu2O3 and nanoparticles of Gd2O3:Eu were prepared by conventional melt-quench method and their luminescence properties were compared. Undoped (ZnO)0.5(P2O5)0.5 glass is characterized by a luminescent defect centre (similar to L-centre present in Na2O-SiO2 glasses) with emission around 324 nm and having an excited state lifetime of 18 ns. Such defect centres can transfer the energy to Eu3+ ions leading to improved Eu3+ luminescence from such glasses. Based on the decay curves corresponding to the 5D0 level of Eu3+ ions in both Gd2O3:Eu nanoparticles incorporated as well as Eu2O3 incorporated glasses, a significant clustering of Eu3+ ions taking place with the latter sample is confirmed. From the lifetime studies of the excited state of L-centre emission from (ZnO)0.5(P2O5)0.5 glass doped with Gd2O3:Eu nanoparticles, it is established that there exists weak energy transfer from L-centres to Eu3+ ions. Poor energy transfer from the defect centres to Eu3+ ions in Gd2O3:Eu nanoparticles doped (ZnO)0.5(P2O5)0.5 glass has been attributed to effective shielding of Eu3+ ions from the luminescence centre by Gd-O-P type of linkages, leading to an increased distance between luminescent centre and Eu3+ ions.  相似文献   

10.
The value of the effective magnetic anisotropy constant of the ferrimagnetic nanoparticles Zn0.15Ni0.85Fe2O4 embedded in a SiO2 silica matrix, determined through ferromagnetic resonance (FMR), is much higher than the magnetocrystalline anisotropy constant. The higher value of the anisotropy constant is due to the existence of surface anisotropy. However, even if the magnetic anisotropy is high, the ferrimagnetic nanoparticles with a 15% concentration, which are isolated in a SiO2 matrix, display a superparamagnetic (SPM) behavior at room temperature and at a frequency of the magnetization field equal to 50 Hz. The FMR spectrum of the novel nanocomposite (Zn0.15Ni0.85Fe2O4)0.15/(SiO2)0.85, recorded at room temperature and a frequency of 9.060 GHz, is observed at a resonance field (B0r) of 0.2285 T, which is substantially lower than the field corresponding to free electron resonance (ESR) (0.3236 T). Apart from the line corresponding to the resonance of the nanoparticle system, the spectrum also contains an additional weaker line, identified for a resonance field of ∼0.12 T, which is appreciably lower than B0r. This line was attributed to magnetic ions complex that is in a disordered structure in the layer that has an average thickness of 1.4 nm, this layer being situated on the surface of the Zn0.15Ni0.85Fe2O4 nanoparticles that have a mean magnetic diameter of 8.9 nm.  相似文献   

11.
Co3O4 nanoparticles have been prepared for the first time via reflux method, as an alternative low-temperature high-yield process, starting from one single precursor. A plausible mechanism is suggested for the synthetic process. XRD, TEM, FTIR and VSM were used for the structural, morphological, spectroscopic, and magnetic characterization of the product respectively. X-ray diffraction line profile fitting showed that average particle size of the sample is 28 nm. Morphology of the synthesized powder was observed to be thin nanosheets with a thickness of 2-3 nm based on SEM and TEM analyses. Magnetic measurements showed a deviation of the Neel temperature from the bulk value which is attributed to the finite size effects. A loop shift with an enhanced coercivity is observed in the field-cooled hysteresis loops. The opening of the hysteresis loop reveals the existence of the spin-glass like surface spins of the Co3O4 nanoparticles.  相似文献   

12.
Zero field cooled dc-magnetization measurements of monodispersed Mn0.5Zn0.5Fe2O4 nanoparticles dispersed in kerosene exhibit two transitions at low temperatures. These transitions correspond to (i) the superparamagnetic to blocked superparamagnetic and (ii) the blocked superparamagnetic to surface spin-glass like/quantum superparamagnetic state upon lowering the temperature. The existence of a disorder surface is confirmed by recording small-angle neutron scattering data below and above the Curie temperature. Magnetic relaxation analysis shows a plateau at low temperature (below 5 K) with a slight minimum at 3 K, which is a characteristic of the surface spin-glass-like state. This is analyzed considering the energy distribution n(E)∼1/E. The existence of surface disorder dominates at low temperature and mimics the transition from superparamagnetic to quantum superparamagnetic states.  相似文献   

13.
The magnetic properties of Y2 B 2/3Mo4/3O7 complex oxides (B = Co, Fe) were studied in the temperature range 2–300 K. At low temperatures, these compounds exhibit spin-glass properties with freezing temperatures T f=26 and 33 K, respectively, and typical features in the magnetic hysteresis and in the dependences of the real part of the dynamic magnetic susceptibility on temperature and ac magnetic field frequency. Above T f, the static magnetic susceptibility of the samples studied depends on the applied magnetic field, which is tentatively assigned to the presence of metallic cobalt and/or yttrium orthoferrite YFeO3 introduced in the course of sample preparation. __________ Translated from Fizika Tverdogo Tela, Vol. 47, No. 12, 2005, pp. 2182–2188. Original Russian Text Copyright ? 2005 by Bazuev, Korolev.  相似文献   

14.
Low field dc magnetic susceptibility measurements on amorphous YFe2 show a distinct cusp-like peak at TS.G. = 58 K. This result, together with earlier Mőssbauer and neutron scattering measurements, indicates that a true thermodynamic spin-glass transition occurs at TS.G.. In addition, susceptibility and coercive field data are presented which strongly suggest a magnetic freezing or blocking temperature near T = 20 K. This is the first time these two magnetic phenomena have been observed in the same magnetic system.  相似文献   

15.
The molecular crystal (KBr)0.47 (KCN)0.53 has been investigated by elastic neutron diffraction at the transition from the paraelastic to the orientational glass state. The freezing temperature is characterized by the onset of a momentum transfer dependent broadening of the diffraction lines indicating the transition from a crystalline to an amorphous state.  相似文献   

16.
The synthesis and some physical properties of a new quasi-one-dimensional tetracyanidoplatinate, Cs4[Pt(CN)4](CF3SO3)2 (CsCP(OTf)) are reported and described in comparison to the well-known K2[Pt(CN)4]Br0.30·3.2H2O (KCP). Single-crystal X-ray diffraction reveals Pt–Pt spacings to be greater than those of KCP by 5% longitudinal and 38% transverse, but much shorter than comparable spacings in other non-partially oxidized platinates. Anomalies are observed between temperatures 100 K and 200 K: (1) Longitudinal DC conductivity is two orders of magnitude higher and is non-monotonic with temperature, showing a minimum at around 170 K. (2) Nuclear magnetic resonance (NMR) longitudinal relaxation time T1 is at least three orders of magnitude higher than that of KCP, and is also non-monotonic with temperature, showing a sharp peak at around 120 K. Since X-ray diffraction reveals no structural transition at 120 K, these suggest a possible lattice freezing or stiffening at around 120 K.  相似文献   

17.
From a new magnetically diluted spinel oxide with composition Fe0.6Mg1.6Ni0.1Ti0.7O4 an as-prepared sample and one after reheating three times have been investigated with Mössbauer spectroscopy. The spectra of the as-prepared sample clearly show a typical superparamagnetic behaviour of magnetic clusters with diverging sizes. On the other hand, the reheated sample exhibits a sharp magnetic transition at 16 K. External-field Mössbauer measurements of the latter reveal spin canting to be exclusively present on the octahedral sites which disappears at the magnetic transition temperature. These results show that this spinel compound exhibits a transition to a spin-glass for which the random freezing only occurs on the octahedral sites.  相似文献   

18.
Using ac susceptibility, dc magnetization and heat-capacity measurements, we have investigated the magnetic properties of Cd0.5Cu0.5Cr2O4. Cd0.5Cu0.5Cr2O4 has an extraordinary magnetic phase including a metastable spin-glass (SG) phase at zero field, a possible phase separation scenario of AFM/FM above ∼0.5 T field, and at intermediate fields, an apparent pseudo reentrant spin-glass (RSG) plateau is observed. These phenomena are closely correlated with the pinning effect of the Cu2+ sublattice on the frustrated lattice.  相似文献   

19.
The compound dihydrazinium bis(sulfato) niccolate(II), Ni(N2H5)2(SO4)2, containing sulfato-bridged chains of Ni(II) ions, can be described as an antiferromagnetic Heisenberg linear-chain system. A reasonable agreement of susceptibility measurements in the temperature region 2–80K, with a theory developed by Weng for antiferromagnetic Heisenberg linear chains with spin S=1, is obtained for a value of the intra-chain interaction Jk=?3.35K. Preliminary results of specific heat measurements, on the other hand, do not fit quite well using this model. The origin of this discrepancy is suggested to be a zero-field splitting of the single ion.  相似文献   

20.
CuInS2, CuInSe2 and CuInTe2 nanocubes of chalcopyrite structure have been successfully synthesized by hydrothermal process using deionized water as solvent at 180 °C for 20 h. The crystallinity, compositional, morphological and optical properties of the synthesized samples were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray (EDX), Raman and photoluminescence (PL) spectra analyses. The Raman spectra of the synthesized CuInS2, CuInSe2 and CuInTe2 samples show the dominant A1 modes at 293, 172 and 121 cm−1 respectively. The possible chemical reaction and mechanism of nanocubes formation were discussed. The emission wavelength of as synthesized CuInS2, CuInSe2 and CuInTe2 samples were blue shifted at 746 nm (1.66 eV), 863 nm (1.43 eV) and 859 nm (1.44 eV) respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号