首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Y.L. Li  K.L. Yao  Z.L. Liu 《Surface science》2007,601(3):876-882
Six surface models for the Fe3O4(1 1 0) surface were studied using the density functional theory (DFT), namely the AB-terminated surface (AB model), the AB-terminated with FeA vacancy (AB-FeA vac model), the AB-terminated with FeB vacancy (AB-FeB vac model), the B-terminated surface (B model), the B-terminated surface with FeB vacancy (B-FeB vac model), and the B-terminated surface with O vacancy (B-O vac model). Here, A and B denoted the Fe cations in tetrahedrally (FeA) and octahedrally (FeB) coordinated interstices. The stability, the electronic structure and the magnetic properties of the six surface models were also calculated. The results predict that the B-O vac model is more stable than other surface models. The half-metallic property remains in the AB and B models, while the other four surface models exhibit metallic properties. At the same time, the AB, AB-FeA vac, AB-FeB vac, B and the B-FeB vac models have ferrimagnetic properties, while the B-O vac model has antiferromagnetic property.  相似文献   

2.
We present a study of structural and electronic properties of YPd5Al2. Specific-heat measurements reveal a relatively low Sommerfeld coefficient of the electronic contribution γ=4.1 mJ mol−1 K−2. No superconductivity is found down to 0.4 K. First-principles electronic-structure calculations based on density-functional theory have been performed and have been compared with available experimental structural and electronic data.  相似文献   

3.
The structural, elastic, electronic and optical properties of the monoclinic BiScO3 are investigated in the framework of the density functional theory. The calculated structural parameters are in agreement with the experimental values. Moreover, the structural stability of BiScO3 system has been confirmed by the calculated elastic constants. The band structure, density of states, charge transfers and bond populations are also given. The results indicate that BiScO3 has a direct band gap of 3.36 eV between the occupied O 2p states and unoccupied Bi 6p states, and its bonding behavior is a combination of covalent and ionic nature. Finally, the absorption spectrum, refractive index, extinction coefficient, reflectivity, energy-loss function and dielectric function of the monoclinic BiScO3 are calculated. In addition, the variation of the static dielectric constants ε1(0) as a function of pressure for BiScO3 is also discussed.  相似文献   

4.
We investigated the effect of aluminum vacancies (VAl) on the structural, electronic and optical properties of Ta4Al1−xC3 (x=0, 0.25, 0.5, 0.75) based on the first-principle calculation using density functional theory. We found that the lattice constant a remains almost unchanged with the variation of VAl concentration, while c and c/a ratio decrease with increasing VAl concentration. Moreover VAl induced local distortions have significant influence on the electronic and optical properties of Ta4AlC3, especially beyond the critical VAl concentration (x=0.5). On the other hand, the presence of VAl can improve the dielectric properties of Ta4AlC3. From the optical properties analysis, we predicted that Ta4Al1−xC3 is not suitable as a coating material to avoid solar heating.  相似文献   

5.
We investigate the electronic structure for Cu2CdGeSe4 in stannite structure with the first-principles method. This crystal is the direct band gap compound. In addition, the dielectric function, absorption coefficient, reflectivity, and energy-loss function are studied using the density functional theory within the generalized gradient approximation. We discuss the optical transitions between the valence bands and the conduction bands in the spectra of the imaginary part of the dielectric function at length. We also find a very high absorption coefficient and wide absorption spectrum for this material. The prominent structures in the spectra of reflectivity and energy-loss function are discussed in detail.  相似文献   

6.
The density of states (DOS) and the magnetic moments of SmCrSb3 and GdCrSb3 have been studied by first principles full-potential linearized augmented plane wave (FP-LAPW) method based on density functional theory (DFT). For the exchange-correlation potential, the local-spin density approximations with correlation energy (LSDA+U) method have been used. Total and partial DOS have been computed using the WIEN2k code. DOS result shows the exchange-splittings of Cr-3d and rare-earth (R) 4f states electrons, which are responsible for the ground state ferromagnetic (FM) behavior of the systems. The FM behavior of these systems is strongly influenced by the average number of Cr-3d and Sm (Gd) 4f-electrons. The effective moment of SmCrSb3 is found to be 7.07 μB while for GdCrSb3 it is 8.27 μB. The Cr atom plays a significant role on the magnetic properties due to the hybridization between Cr-3d and Sb-5p states.  相似文献   

7.
We present first-principles VASP calculations of the structural, electronic, vibrational, and optical properties of paraelectric SrTiO3 and KTaO3. The ab initio calculations are performed in the framework of density functional theory with different exchange-correlation potentials. Our calculated lattice parameters, elastic constants, and vibrational frequencies are found to be in good agreement with the available experimental values. Then, the bandstructures are calculated with the GW approximation, and the corresponding band gap is used to obtain the optical properties of SrTiO3 and KTaO3.  相似文献   

8.
The full potential linearized augmented plane wave (FP-LAPW) method based on the density functional theory as implemented in the WIEN2k package is applied successfully to the study of the equilibrium lattice parameter and the elastic constants of the cubic B20 structural CoSi. The quasi-harmonic Debye model, in which the phononic effects are considered, is used to investigate the thermodynamic properties of B20 CoSi. Young's modulus and Poisson ratio are obtained from the calculated elastic constants and compared with the available data. The pressure and temperature dependence of the volume, the bulk modulus, the thermal expansion coefficient, the heat capacity and the Debye temperature are successfully obtained in the whole pressure range from 0 to 40 GPa and temperature range from 0 to 1400 K .  相似文献   

9.
李丹  张幸红 《中国物理 B》2011,20(12):126102-126102
We investigate the electronic structure of Ag2HgSnSe4 in a wurtzite-stannite structure with the first principles method. This crystal is a direct band-gap compound. In addition the dielectric function, absorption coefficient, reflectivity, and energy-loss function are studied using the density functional theory in the generalized gradient approximation. We discuss the optical transitions between the valence bands and the conduction bands in the spectrum of the imaginary part of the dielectric function at length. We also find a very high absorption coefficient and a wide absorption band for this material. The prominent structures in the spectra of reflectivity and the energy-loss function are discussed in detail.  相似文献   

10.
The highly accurate all electrons full potential linearized augmented plane wave method is used to calculate structural, electronic, and optical properties of cubic perovskites CsPbM3 (M=Cl, Br, I). The theoretically calculated lattice constants are found to be in good agreement with the experimentally measured values. It is found that all of these compounds are wide and direct bandgap semiconductors with bandgap located at R-symmetry point, while the bandgap decreases from Cl to I. The electron densities reveal strong ionic bonding between Cs and halides but strong covalent bonding between Pb and halides. Optical properties of these compounds like real and imaginary parts of dielectric functions, refractive indices, extinction coefficients, reflectivities, optical conductivities, and absorption coefficients are also calculated. The direct bandgap nature and high absorption power of these compounds in the visible-ultraviolet energy range imply that these perovskites can be used in optical and optoelectronic devices working in this range of the spectrum.  相似文献   

11.
Structural analysis of the synthesized lead iron tantalate, PbFe1/2Ta1/2O3 (PFT) is performed by the refinement of the X-ray diffraction data at room temperature using the GSAS code. Energy dispersive X-ray spectrometry analysis is done to find out the chemical composition. The electronic structure of PFT is calculated by the first principles full potential linearized augmented plane wave method. The spin polarized density of states shows the insulating nature. The magnetic moment of 4.3 μB per Fe ion is obtained from the electronic structure calculation using the GGA+U method and compared with the available experimental data. The electronic structure of the PFT is verified by X-ray photoemission spectroscopy. The dielectric spectroscopy is applied to investigate the electrical properties of PFT in the frequency range from 100 Hz to 1 MHz and in the temperature range from 183 to 253 K. The frequency dependent electrical data are analyzed by conductivity formalism. The relaxation mechanism is explained using the Cole-Cole approach.  相似文献   

12.
By the first-principles calculations, we studied the electronic structures and the magnetic properties of SrTcO3 and Ca(Sr)MnO3. We found the strikingly high Néel temperature of SrTcO3 is mostly due to the strong Tc(4d)–O(2p) hybridizations, since the Tc-4d states are more extended than the Mn-3d states. Such Tc(4d)–O(2p) hybridizations increase the super-exchange constants, hence increased the Néel temperatures.  相似文献   

13.
In this study, 223 binary oxide systems (of which, 34 systems can form cubic perovskites) are collected to explore the regularity of cubic perovskites formability. It is found that the octahedral factor (rB/rO) take the same important role as the tolerance factor (t) to form cubic perovskites in complex oxide system. Regularities governing cubic perovskites formability are obtained by using empirical structure map constructed by these two parameters, on this structure map, sample points representing systems of forming (cubic structure) and non-forming are distributed in distinctively different regions. Prediction criteria for the formability of cubic perovskites are squeezed out, which may be applied to design new substrate or buffer materials with cubic perovskite structure in compound semiconductor epitaxy.  相似文献   

14.
陈中钧  陈太红 《中国物理 B》2012,21(2):27103-027103
A Density functional theory method within generalized gradient approximation has been performed to obtain the static lattice parameters, oxygen positional parameter, bond length and bond angle and electronic properties of ideal Lu2Sn2O7 pyrochlore. The results are in excellent agreement with available experimental measurements. Density of states (DOS) of this compound was presented and analysed. We also notice the presence of the hybridization between oxygen and Lu metal. The band structure calculations show that the compound has direct band gap of 2.67 eV at the Γ point in the Brillouin zone and this indicates that the material has a semi-conducting feature.  相似文献   

15.
The microwave absorption properties of nanosized double perovskite Sr2FeMoO6 and epoxy resin composites were investigated in the frequency range of 2-18 GHz using the coaxial method. The Sr2FeMoO6 composites with an optimal 20 wt% epoxy resin showed a strong electromagnetic attenuation of −49.3 dB at 8.58 GHz with a matching thickness of 2.15 mm. Moreover the optimum absorption frequency at which the reflection loss is less than −20 dB, which corresponds to 99% reflection loss of the incident microwave, is from 5.7 to 13.2 GHz with the matching thickness ranging from 3.0 to 1.5 mm. The excellent microwave-absorption properties are a consequence of a proper electromagnetic match due to the existence of the insulating matrix of anti-site defects and anti-phase domains, which not only contribute to the dielectric loss but also to the reduced eddy current loss.  相似文献   

16.
The structural, electronic and optical properties of AgTF3 (T=Mg, Zn) are calculated for the first time using the full-potential linearized augmented plane wave method within the generalized gradient approximation. Structural parameters of the compounds are found to be in reasonable agreement with the available literature. Both compounds are found to have narrow and indirect band-gaps. The calculated band gap for AgMgF3 is 0.78 eV and 0.75 eV for AgZnF3. It is observed that Ag-4d, Zn-3d and Ag-5s states controls the electronic properties of AgMgF3 and AgZnF3. The nature of chemical bonding in these compounds is discussed by the electron density plots. The results of complex dielectric constant, refractive index, normal-incidence reflectivity and optical conductivity are also presented in the incident photon energy range of 0-35 eV. The wide absorption energy range makes these materials suitable for different devices applications.  相似文献   

17.
The structural, elastic and electronic properties of BiI3 are investigated using the first-principles pseudopotential calculations within the framework of density functional theory. The calculated equilibrium structural parameters agree well with the experimental values. The results show that rhombohedral R-3 structure is low enthalpy structure at zero pressure. R-3 structure will transform into SbI3-type structure (space group P21/c) at about 7.0 GPa. At zero pressure, BiI3 with R-3 symmetry meets the mechanical stability criteria, but BiI3 with P-31 m symmetry is an unstable one mechanically. For R-3 structure, the obtained bulk, shear, and Young’s moduli are 25.6, 15.3 and 38.3 GPa, respectively. BiI3 presents large elastic anisotropy. Debye temperature of R-3 structure calculated is 181 K. The metallization pressure of R-3 structure is about 133 GPa and that of predicted high pressure phase P21/c structure is about 61 GPa, indicating BiI3’s potential application as a nuclear radiation detector under high pressure environment.  相似文献   

18.
Electronic structure calculations based on density functional theory (DFT) within the generalized gradient approximation (GGA) and GGA+U for manganite cuprate compound LuCu3Mn4O12 have been performed, using the full-potential linearized augmented plane wave method. The calculated results indicate that LuCu3Mn4O12 is ferrimagnetic and half-metallic in both GGA and GGA+U calculations. The minority-spin band gap is 0.7 eV within GGA, which is larger than that of LaCu3Mn4O12 (0.3 eV), indicating its better half-metallicity. Further, the minority-spin gap enlarges from 0.7 to 2.8 eV with U taken into account, and simultaneously the Fermi level being shifted to the middle of the gap, making the half-metallic energy gap to be 1.21 eV. These results demonstrate that electronic correlation effect enhances the stability of half-metallic property. These facts make this system interesting candidates for applications in spintronic devices.  相似文献   

19.
The magnetic properties of Ca-doped Nd0.5Sr0.5MnO3 have been studied by electron spin resonance (ESR) and dc magnetization measurements. The antiferromagnetic order and charge order are found to occur separately at TN=200 K and Tco=150 K, respectively. Compared to the undoped Nd0.5Sr0.5MnO3, the ferromagnetic correlations are suppressed by doping of the small Ca2+ ion. In addition, the antiferromagnetic transition temperature is enhanced to 200 K, which can be explained by an increase of superexchange interaction between Mn3+ and Mn4+ ions as their distance decreases.  相似文献   

20.
Density functional theory has been used to study the electronic and magnetic properties as well as the stability on the hydrogenated BC2N sheets. It is found that two different structures (BC2NH-I and BC2NH-II) with the ferromagnetic ground states can be formed when removing the H atoms from one side of semi-hydrogenated BC2N sheet. By applying tensile strain, both of their magnetisms are robust to 2.0 μB. However, the magnetisms are sensitively changed by compressive strain larger than ?6%. The BC2NH-I system can be transitioned from semiconductor to half-metal and then to metal when the compressive strain is changed from ?6% to ?8%. And the BC2NH-II system can be changed into half-metal by applying the compressive strain between ?6% and ?7.5%. Our calculation results suggest a possible way to tune the electronic and magnetic properties by choosing the appropriate structural type and the external strain, which would have potential applications in spintronics and nanodevices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号