首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Magnetic properties of amorphous Ge1−xMnx thin films were investigated. The thin films were grown at 373 K on (100) Si wafers by using a thermal evaporator. Growth rate was ∼35 nm/min and average film thickness was around 500 nm. The electrical resistivities of Ge1−xMnx thin films are 5.0×10−4∼100 Ω cm at room temperature and decrease with increasing Mn concentration. Low temperature magnetization characteristics and magnetic hysteresis loops measured at various temperatures show that the amorphous Ge1−xMnx thin films are ferromagnetic but the ferromagnetic magnetizations are changing gradually into paramagnetic as increasing temperature. Curie temperature and saturation magnetization vary with Mn concentration. Curie temperature of the deposited films is 80-160 K, and saturation magnetization is 35-100 emu/cc at 5 K. Hall effect measurement at room temperature shows the amorphous Ge1−xMnx thin films have p-type carrier and hole densities are in the range from 7×1017 to 2×1022 cm−3.  相似文献   

2.
The structural, magnetic and optical properties of (ZnO)1−x(MnO2)x (with x = 0.03 and 0.05) thin films deposited by pulsed laser deposition (PLD) were studied. The pellets used as target, sintered at different temperatures ranging from 500 °C to 900 °C, were prepared by conventional solid state method using ZnO and MnO2 powders. The observation of non-monotonic shift in peak position of most preferred (1 0 1) ZnO diffraction plane in XRD spectra of pellets confirmed the substitution of Mn ions in ZnO lattice of the sintered targets. The as-deposited thin film samples are found to be polycrystalline with the preferred orientation mostly along (1 1 0) diffraction plane. The UV-vis spectroscopy of the thin films revealed that the energy band gap exhibit blue shift with increasing Mn content which could be attributed to Burstein-Moss shift caused by Mn doping of the ZnO. The deposited thin films exhibit room temperature ferromagnetism having effective magnetic moment per Mn atom in the range of 0.9-1.4μB for both compositions.  相似文献   

3.
The magnetic properties of Zn1−xCoxS (x=0.025 and 0.05) thin films grown on α-quartz substrates at different temperatures (TS) of 200, 400 and 600 °C by means of pulsed laser deposition are presented. The films are crystallized with wurtzite structure. Optical absorption and transmission electron microscopy measurements indicate that Co ions are substituted to Zn on tetrahedral sites. Their magnetic response is composed of ferromagnetic and paramagnetic components of which respective strengths depend on TS and Co concentration. This behavior is interpreted as due to fluctuations in the magnetic ordering, depending on grain size and site location in grain boundaries or in crystal cores.  相似文献   

4.
We report on the structural, magnetic and electronic transport properties of thin MnxGe1−x films grown at 350 °C. Isolated Mn5Ge3 nanoclusters, about 100 nm in size, were formed at the top surface of the film, dominating the magnetic properties of the whole film. Electronic transport properties show Mn doping effect indicating the presence of substitutional Mn ions dispersed in the Ge host, contributing to the formation of a MnxGe1−x diluted phase. Electrical behaviour indicates a saturation effect with the raise of the nominal Mn concentration in the film, above x ≅ 0.03.  相似文献   

5.
The effect of Cr100−xTix underlayer on orderd-L10 FePt films was investigated. A low-temperature ordering of FePt films could be attained through changing the Ti content of Cr100−xTix underlayer. The ordering temperature of the 30 nm FePt film grown on 20 nm Cr90Ti10 underlayer was reduced to 250 °C which is practical manufacture process temperature. An in-plane coercivity was very high to 6000 Oe and a ratio of remnant magnetization (Mr) to saturation magnetization (Ms) was as large as 0.85. This result indicates that the coercivity obtained at 250 °C by the effect of CrTi underlayer is significantly higher than those obtained at 250-275 °C by the effect of underlayers in other conventional studies. The prominent improvement of the magnetic properties of ordered FePt thin films at low temperature of 250 °C could be understood with considering the strain-induced ordering phase transformation associated with lattice mismatch between Cr underlayer and FePt magnetic layer due to an addition of Ti content.  相似文献   

6.
The effect of electron-beam irradiation on the magnetic properties of (Ga1−xMnx)As thin films grown on GaAs (100) substrates by using molecular beam epitaxy was investigated. The ferromagnetic transition temperature (Tc) of the annealed (Ga0.933Mn0.067)As thin films was 160 K. The Tc value for the as-grown (Ga0.933Mn0.067)As thin films drastically decreased with increasing electron-beam current. This significant decrease in the Tc value due to electron-beam irradiation originated from the transformation of Mn substituted atoms, which contributed to the ferromagnetism, into Mn interstitials or Mn-related clusters. These results indicate that the magnetic properties of (Ga1−xMnx)As thin films grown on GaAs (100) substrates are significantly affected by electron-beam irradiation.  相似文献   

7.
BiFeO3/Zn1−xMnxO (x = 0-0.08) bilayered thin films were deposited on the SrRuO3/Pt/TiO2/SiO2/Si(1 0 0) substrates by radio frequency sputtering. A highly (1 1 0) orientation was induced for BiFeO3/Zn1−xMnxO. BiFeO3/Zn1−xMnxO thin films demonstrate diode-like and resistive hysteresis behavior. A remanent polarization in the range of 2Pr ∼ 121.0-130.6 μC/cm2 was measured for BiFeO3/Zn1−xMnxO. BiFeO3/Zn1−xMnxO (x = 0.04) bilayer exhibits a highest Ms value of 15.2 emu/cm3, owing to the presence of the magnetic Zn0.96Mn0.04O layer with an enhanced Ms value.  相似文献   

8.
Series of CoxCr1−x thin films have been evaporated under vacuum onto Si(1 0 0) and glass substrates. Thickness ranges from 17 to 220 nm, and x from 0.80 to 0.88. Alternating gradient field magnetometer (AGFM) measurements provided saturation magnetization values ranging from 220 to 1200 emu/cm3. Values of squareness exceeding 0.8 have been measured. Coercive field may reach values up to 700 Oe, depending on the percentage of chromium, as well as the substrate nature and the direction of the applied magnetic field. The saturation magnetization value decreases as the Cr content increases. In order to study their dynamical magnetic properties, Brillouin Light Scattering (BLS) measurements have been performed on these samples. Stiffness constant value and anisotropy magnetic field were adjusted to fit the experimental BLS spectra. These results are analyzed and correlated.  相似文献   

9.
FexNi100−x thin films were produced by galvanostatic electrodeposition on Si (1 0 0), nominal thickness 2800 nm, and x ranging 7-20. The crystalline structure of the sample was determined by X-ray diffraction (XRD). The magnetic properties were investigated by vibration sample magnetometry (VSM) and room temperature 57Fe Mössbauer spectroscopy. Conversion Electron Mössbauer spectroscopy (CEMS) in both film surfaces for the thick self-supported films showed that the magnetic moment direction is in the plane and conventional transmission (MS) that the directions are out of the plane films. The results were interpreted assuming a three-layer model where the external layer has in-plane magnetization and the internal one, out of plane magnetization.  相似文献   

10.
HfNxOy thin films were deposited on Si substrates by direct current sputtering at room temperature. The samples were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD). SEM indicates that the film is composed of nanoparticles. AFM indicates that there are no sharp protrusions on the surface of the film. XRD pattern shows that the films are amorphous. The field electron emission properties of the film were also characterized. The turn-on electric field is about 14 V/μm at the current density of 10 μA/cm2, and at the electric field of 24 V/μm, the current density is up to 1 mA/cm2. The field electron emission mechanism of the HfNxOy thin film is also discussed.  相似文献   

11.
This paper investigates the structure and surface characteristics, and electrical properties of the polycrystalline silicon-germanium (poly-Si1−xGex) alloy thin films, deposited by vertical reduced pressure CVD (RPCVD) in the temperature range between 500 and 750 °C and a total pressure of 5 or 10 Torr. The samples exhibited a very uniform good quality films formation, with smooth surface with rms roughness as low as 7 nm for all temperature range, Ge mole fraction up to 32% (at 600 °C), textures of 〈2 2 0〉 preferred orientation at lower temperatures and strong 〈1 1 1〉 at 750 °C, for both 5 and 10 Torr deposition pressures. The 31P+ and 11B+ doped poly-Si1−xGex films exhibited always lower electrical resistivity values in comparison to similar poly-Si films, regardless of the employed anneal temperature or implantat dose. The results indicated also that poly-Si1−xGex films require much lower temperature and ion implant dose than poly-Si to achieve the same film resistivity. These characteristics indicate a high quality of obtained poly-Si1−xGex films, suitable as a gate electrode material for submicron CMOS devices.  相似文献   

12.
We have prepared a series of (PLZT)x(BiFeO3)1−x transparent thin films with thickness of 300 nm by a thermal pyrolysis method. Only films with x≦0.10 formed a single phase of perovskite structure. The film where x=0.10 exhibited both ferromagnetic and ferroelectric properties at room temperature with spontaneous magnetization and coercive magnetic fields of 0.0027μB and 5500 G, respectively. The remanent electric polarization and coercive electric field for the film where x=0.10 were 3.0 μC/cm2 and 24 kV/cm, respectively. Additionally, films with 0.02≦x≦0.10 showed both magneto-optical effects and the second harmonic generation of transmitted light.  相似文献   

13.
Sn1−xMnxO2 (x=0.01-0.05) thin films were synthesized on quartz substrate using an inexpensive ultrasonic spray pyrolysis technique. The influence of doping concentration and substrate temperature on structural and magnetic properties of Sn1−xMnxO2 thin films was systematically investigated. X-ray diffraction (XRD) studies of these films reflect that the Mn3+ ions have substituted Sn4+ ions without changing the tetragonal rutile structure of pure SnO2. A linear increase in c-axis lattice constant has been observed with corresponding increase in Mn concentration. No impurity phase was detected in XRD patterns even after doping 5 at% of Mn. A systematic change in magnetic behavior from ferromagnetic to paramagnetic was observed with increase in substrate temperature from 500 to 700 °C for Sn1−xMnxO2 (x=0.01) films. Magnetic studies reveal room-temperature ferromagnetism (RTFM) with 3.61×10−4 emu saturation magnetization and 92 Oe coercivity in case of Sn1−xMnxO2 (x=0.01) films deposited at 500 °C. However, paramagnetic behavior was observed for the films deposited at a higher substrate temperature of 700 °C. The presence of room-temperature ferromagnetism in these films was observed to have an intrinsic origin and could be obtained by controlling the substrate temperature and Mn doping concentration.  相似文献   

14.
Ge1−xMnx (x = 0, 0.013, 0.0226, 0.0339, 0.0565, 0.0678, 0.0904, 0.113) films prepared by magnetron sputtering at 773 K had a Ge cubic structure except for x = 0.1130. Co ion implantation into these films can effectively prevent the formation of a second phase. Both single-doped and co-doped samples were ferromagnetic at room temperature. The d-d exchange interaction between the interstitial Mn (MnT) and the substituted Mn (MnGe) resulted in ferromagnetism in the sputtered films. Since Co ion implantation destroyed the MnT-MnGe-MnT complex, the saturated magnetization decreased. Hall measurements revealed that the Co ion implanted films were n-type semiconductors, and the anomalous Hall Effect (AHE) suggested the ferromagnetism was carrier-mediated in the implanted films.  相似文献   

15.
We investigated the nanotribological properties of Zn1−xMnxO epilayers (0 ≤ x ≤ 0.16) grown by molecular beam epitaxy (MBE) on sapphire substrates. The surface roughness and friction coefficient (μ) were analyzed by means of atomic force microscopy (AFM) and hysitron triboscope nanoindenter techniques.The nanoscratch system gave the μ value of the films ranging from 0.17 to 0.07 and the penetration depth value ranging 294-200 nm when the Mn content was increased from x = 0 to 0.16. The results strongly indicate that the scratch wear depth under constant load shows that higher Mn content leads to Zn1−xMnxO epilayers with higher shear resistance, which enhances the Mn-O bond. These findings reveal that the role of Mn content on the growth of Zn1−xMnxO epilayers can be identified by their nanotribological behavior.  相似文献   

16.
R. Ghosh 《Applied Surface Science》2009,255(16):7238-7242
MgxZn1−xO (x = 0.0-0.20) thin films have been deposited by sol-gel technique on glass substrates and the effect of growth ambient (air and oxygen) on the structural, and optical properties have been investigated. The films synthesized in both ambient have hexagonal wurtzite structure. The c-axis lattice constant decreases linearly with the Mg content (x) up to x = 0.05, and 0.10 respectively for air- and oxygen-treated films, above which up to x = 0.20, the values vary irregularly with x. The change in the optical band gap values and the ultraviolet (UV) peak positions of MgxZn1−xO films show the similar change with x. These results suggest that the formation of solid solution and thus the structural and optical properties of MgxZn1−xO thin films are affected by the growth ambient.  相似文献   

17.
The magnetic entropy change in GdCo13−xSix (x=3.8, 4, 4.1, and 4.2) intermetallic compounds has been investigated by means of magnetic measurements in the vicinity of their Curie temperature. It was found that the magnetic ordering temperatures decrease from 60 K at x=3.8 to 28 K for x=4.2. The magnetic entropy change is calculated from isothermal magnetization versus magnetic field at various temperatures using the Maxwell relation. As a result, the maximum magnetic entropy changes of the investigated compounds, at their Curie temperatures, decrease from 11.5 J/kg K for x=4.2 to 6.86 J/kg K for x=3.8 in a field change of 0-3 T, whereas it decreases from 5.13 J/kg K for x=4.2 to 2.60 J/kg K for x=3.8 in a field change of 0-1 T. Moreover, the maximum value of the magnetic entropy change obtained at a higher field for GdCo13−xSix with x=4 (23.75 J/kg K at 5 T) is comparable to that of various types of compounds with a cubic NaZn13-type structure. Finally, the maximum of the magnetic entropy change is found to decrease with increasing Si content.  相似文献   

18.
Nanocrystalline Co2xNi0.5−xZn0.5−xFe2O4 (x=0−0.5) thin films have been synthesized with various grain sizes by a sol-gel method on polycrystalline silicon substrates. The morphology as well as magnetic and microwave absorption properties of the films calcined at 1073 K were studied using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, and vibrating sample magnetometry. All films were uniform without microcracks. The Co content in the Co-Ni-Zn films resulted in a grain size ranging from 15 to 32 nm while it ranged from 33 to 49 nm in the corresponding powders. Saturation and remnant magnetization increased with increase in grain size, while coercivity demonstrated a drop due to multidomain behavior of crystallites for a given value of x. Saturation magnetization increased and remnant magnetization had a maximum as a function of grain size independent of x. In turn, coercivity increased with x independent of grain size. Complex permittivity of the Co-Ni-Zn ferrite films was measured in the frequency range 2-15 GHz. The highest hysteretic heating rate in the temperature range 315-355 K was observed in CoFe2O4. The maximum absorption band shifted from 13 to 11 GHz as cobalt content increased from x=0.1 to 0.2.  相似文献   

19.
The effects of Mn substitutions on the crystal structure, magnetic properties, and magnetocaloric effect (MCE) of antiperovskite Sn1−xCMn3+x (0≤x≤0.40) have been investigated detailedly. Both the Curie temperature (TC) and the magnetizations at 40 kOe decrease with increasing x firstly for x≤0.10, and then increase with increasing x further. The type of magnetic transition changes from first-order to second-order around x=0.10 with increasing x. Chemical composition-dependent MCE is also studied around TC. With increasing x, the maximal magnetic entropy changes decrease and the magnetic phase transitions broaden. Accordingly, the relative cooling power (RCP) increases with increasing x, reaching the largest values of ∼0.56 J/cm3 (∼75 J/kg) and ∼1.66 J/cm3 (∼221 J/kg) with the magnetic changes of 20 kOe and 48 kOe, respectively. Considering the large RCP, inexpensive, and innoxious raw materials, these serial samples Sn1−xCMn3+x are suggested to be potential room-temperature magnetic refrigerant materials.  相似文献   

20.
Deposited with different oxygen partial pressures and substrate temperatures, MgxZn1−xO thin films were prepared using a Mg0.6Zn0.4O ceramic target by magnetron sputtering. The structural and optical properties of the prepared thin films were investigated. The X-ray diffraction spectra reveal that all the films on quartz substrate are grown along (2 0 0) orientation with cubic structure. The lattice constant decreases and the crystallite size increases with the increase of substrate temperature. Both energy dispersive X-ray spectroscopy and calculated results suggest the ratio of Mg/Zn increases with increasing substrate temperature. The thin film deposited with Ts = 500 °C has a minimal rms roughness of 7.37 nm. The transmittance of all the films is higher than 85% in the visual region. The optical band gap is not sensitive to the oxygen partial pressure, while it increases from 5.63 eV for Ts = 100 °C to 5.95 eV for Ts = 700 °C. In addition, the refractive indices calculated from transmission spectra are sensitive to the substrate temperature. The photoluminescence spectra of MgxZn1−xO thin films excited by 330 nm ultraviolet light indicate that the peak intensity of the spectra is influenced by the oxygen partial pressure and substrate temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号