首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structural and optical analysis of glasses is carried out by XRD, FTIR, density and UV visible spectroscopic measurement techniques. XRD results have confirmed the glassy nature of the samples. The FTIR spectral analysis reveals that with the combined presence of ZnO and CeO2 contents in Al2O3-PbO-B2O3 glasses, more BO3 groups are transformed into BO4. The optical analysis reveals that optical band gap energy decreases more for CeO2-ZnO-Al2O3-PbO-B2O3 glasses (from 2.28 to 1.84 eV). The presence of CeO2 and ZnO in the glass samples causes more compaction of the borate network due to the formation of more BO4 groups and the presence of ZnO4 groups, which results an increase in density, refractive index and decrease of molar volume.  相似文献   

2.
xV2O5xCeO2–(30−x)PbO–(70−x) B2O3 glasses are synthesized by using the melt quench technique. The number of studies such as XRD, density, molar volume, optical band gap, refractive index and FTIR spectroscopy are employed to characterize the glasses. The band gap decreases from 2.20 to 1.78 eV and density increases from 3.49 to 4.25 g/cm3. FTIR spectroscopy reveals that incorporation of V2O5 in glass network helps to convert the structural units of [BO3] into [BO4]. At higher concentration of vanadium, VO vibration of [VO5] structural units and V–O–V vibration are present. The bond ionicity of glasses increases with incorporation of V2O5 contents.  相似文献   

3.
Glass samples of composition xAl2O3-20PbO-(80−x)B2O3 and xWO3-xAl2O3-20PbO-(80−2x)B2O3 with x varying from 0% to 10% mole fraction are prepared by melt quench technique. The optical band gap decreases (from 3.21 to 2.37 eV) more for WO3-Al2O3-PbO-B2O3 glasses with an addition of WO3 content. The FTIR spectral studies have pointed out the conversion of structural units of BO3 to BO4 and WO4 to WO6 in these glasses. The increase in density from 4.51 to 5.80 g cm−3 for WO3-Al2O3-PbO-B2O3 glasses is observed with an increase in WO3 content. This is observed that the atomic structure changes more with the incorporation of WO3. This is due to the formation of WO6, WO4 and BO4 units.  相似文献   

4.
Nonlinear optical properties of 75TeO_2-20Nb_2O_5-5ZnO glasses doped with CeO_2 have been investigated with a self-diffracted time-resolved degenerate four-wave mixing (DFWM) technique at different excitation intensities and lattice temperatures. The DFWM signal exhibits three peaks at higher excitation intensities, where a main peak appears at zero delay time and two rather weak side peaks are located symmetrically at the negative and positive time delay. Due to destructive interferences between the fifth- and third-order polarizations, the line-shape of the main peak around the zero time delay evolves from single peak into a double-peak structure with increasing excitation intensity. Two side peaks emerge at the positive and negative time delay and gradually intensify with increasing excitation intensity or lattice temperature, and their positions are independent of the pulse duration, temperature and excitation intensity, which are attributed to the many-body Coulomb interaction.  相似文献   

5.
Pure and WO3 doped CeO2-PbO-B2O3 glasses are prepared by the melt-quench technique. The structural and optical analyses of glasses are carried out by XRD, FTIR, density and UV-vis spectroscopic measurement techniques. FTIR analysis indicates the transformation of structural units of BO3 into BO4 with W-O-W vibration and the presence of WO4 and WO6 units observed with increase in WO3 contents. Decrease in band gap for CeO2-PbO-B2O3 glasses from 2.89 to 2.30 eV and for WO3 doped glasses from 2.89 to 1.95 eV has been observed and discussed. This decrease in band gap with WO3 doping approaches to semiconductor behavior. It shows that the presence of WO3 in the glass samples causes more compaction of the borate network due to the formation of BO4 groups and the presence of WO4 and WO6 groups, which result in a decrease in the optical band gap energy and increase in the density.  相似文献   

6.
EPR and optical absorption studies on Fe3+ and Mn2+ doped strontium tetraborate (SrB4O7) glasses are carried out at room temperature. The EPR spectrum of the Fe3+ doped glass consists of signals with g-values 9.04, 4.22 and 2.04, whereas the EPR spectrum of Mn2+ doped glass exhibits a characteristic hyperfine sextet around g=2.0. The spectroscopic analyses of the obtained results confirmed distorted octahedral site symmetry for the Fe3+ and Mn2+ impurity ions. Crystal field and Racah parameters evaluated from optical absorption spectra are: Dq=790, B=700 and C=3000 cm−1 for Fe3+doped glass and Dq=880, B=700 and C=2975 cm−1 for Mn2+ doped glass.  相似文献   

7.
A glass system with chemical formula xBi2O3-(30−x)CdO-10B2O3-20Fe2O3-40P2O5 (0≤x≤30) wt% is prepared to be used as radiation shield. The mass attenuation coefficient and half value layer of the glass system to gamma rays have been measured experimentally and compared with those determined from theoretical calculations using the mixture rule of WinXCom program. A database of effective mass removal cross-sections for fast neutrons is also introduced in this work. The obtained results of this study are correlated to the structural properties of these glasses obtained from their IR spectra and the influence of gamma and neutrons irradiation on these structural properties.  相似文献   

8.
Glasses with composition xWO3·(30−x)M2O·70B2O3 (M=Li, Na; 0≤x≤15) doped with 2 mol% V2O5 have been prepared using the melt-quench technique. The electron paramagnetic resonance spectra have been recorded in X-band (ν≈9.14 GHz) at room temperature (RT). The spin Hamiltonian parameters, dipolar hyperfine coupling parameter and Fermi contact interaction parameter have been calculated. It is observed that the resultant resonance spectra contain hyperfine structures (hfs) only due to V4+ ions, which exist as VO2+ ions in octahedral coordination with a tetragonal compression in the present glass system. The tetragonality increases with WO3:M2O ratio and also there is an expansion of 3dxy orbit of unpaired electron in the vanadium ion. The study of IR transmission spectra over a range 400-4000 cm−1 depicts the presence of WO6 group. The DC conductivity (σ) has been measured in the temperature range 423-623 K and is found to be predominantly ionic.  相似文献   

9.
Binary (ZnO)0.5(P2O5)0.5 glasses doped with Eu2O3 and nanoparticles of Gd2O3:Eu were prepared by conventional melt-quench method and their luminescence properties were compared. Undoped (ZnO)0.5(P2O5)0.5 glass is characterized by a luminescent defect centre (similar to L-centre present in Na2O-SiO2 glasses) with emission around 324 nm and having an excited state lifetime of 18 ns. Such defect centres can transfer the energy to Eu3+ ions leading to improved Eu3+ luminescence from such glasses. Based on the decay curves corresponding to the 5D0 level of Eu3+ ions in both Gd2O3:Eu nanoparticles incorporated as well as Eu2O3 incorporated glasses, a significant clustering of Eu3+ ions taking place with the latter sample is confirmed. From the lifetime studies of the excited state of L-centre emission from (ZnO)0.5(P2O5)0.5 glass doped with Gd2O3:Eu nanoparticles, it is established that there exists weak energy transfer from L-centres to Eu3+ ions. Poor energy transfer from the defect centres to Eu3+ ions in Gd2O3:Eu nanoparticles doped (ZnO)0.5(P2O5)0.5 glass has been attributed to effective shielding of Eu3+ ions from the luminescence centre by Gd-O-P type of linkages, leading to an increased distance between luminescent centre and Eu3+ ions.  相似文献   

10.
Lead vanadate glasses of the system 5Li2O−(45−x) PbO−(50+x) V2O5, with x=0, 5, 10, and 15 mol% have been prepared and studied by differential scanning calorimetry (DSC). The crystallization kinetics of the glasses were investigated under non-isothermal conditions applying the formal theory of transformations for heterogeneous nucleation to the experimental data obtained by DSC using continuous-heating techniques. In addition, from dependence of the glass-transition temperature (Tg) on the heating rate, the activation energy for the glass transition was derived. Similarly the activation energy of the crystallization process was determined and the crystallization mechanism was characterized. The results reveal the increase of the activation energy for glass transition which was attributed to the increase in the rigidity, the cross-link density and the packing density of these glasses. The phases into which the glass crystallizes have been identified by X-ray diffraction. Diffractograms of the transformed material indicate the presence of microcrystallites of Li0.30V2O5, Li0.67O5V2, LiV6O15, Li4O4Pb, and O7Pb2V2 in a remaining amorphous matrix.  相似文献   

11.
Glass samples of compositions 20PbO-80B2O3 and xWO3—(20−x) ZnO-20PbO-60B2O3 with x varying from 0% to 10% mole fraction are prepared by the melt quench technique. Decrease in the band gap from 2.86 to 2.16 eV for ZnO-PbO-B2O3 glasses with an increase in the WO3 content has been observed and discussed. The FTIR spectral studies have pointed out the conversion of structural units of BO3 to BO4 and WO4 to WO6 with the presence of W-O-W vibration of tungsten and incorporation of ZnO4 structural units of zinc in these glasses. The increase in density from 2.75 to 4.03 gcm−3 for ZnO-PbO-B2O3 glasses is observed with an increase in WO3 content. Due to the formation of WO6, WO4 and BO4 units, changes in the atomic structure with WO3 composition are observed and discussed.  相似文献   

12.
Erbium-doped MoO3−Bi2O3−TeO2 (MBT) glasses suitable for broadband optical amplifier applications have been fabricated and characterized optically. The maximum phonon band of undoped glasses is at 915 cm−1, and the emission from the Er3+: 4I13/2 → 4I15/2 transition locates around 1.53 μm with a full width at half maximum (FWHM) of ∼80 nm. The lifetime and quantum efficiency of the 4I13/2 level are 2.13 ms and ∼90%, respectively. Under the same measurement condition, the upconversion emission intensities at 550 nm in Er3+-doped MBT glasses is about 30 times weaker than that in Er3+-doped Na2O−ZnO−TeO2 (NZT) glasses.  相似文献   

13.
The blue long-lasting phosphorescence (LLP) phenomenon was observed for Eu2+-doped SrO-B2O3 glasses prepared in the reducing atmosphere. The phosphorescence peaks at about 450 nm due to the 4f5d→4f transition of Eu2+. With the doping of different amounts of Eu2+, the concentration-quenching phenomenon was observed for both the LLP and photoluminescence of the glasses, and the critical concentration for the two cases was same, i.e., 0.02 mol% Eu2+. And by the investigation of the TL curves, the content of Eu2+ had an effect on the trap depth of the samples. At last the possible mechanism of the LLP of the samples was suggested.  相似文献   

14.
Glasses with compositions 70B2O3-30Bi2O3 and 70B2O3-30PbO have been prepared and studied by differential thermal analysis (DTA). The crystallization kinetics of the glasses were investigated under non-isothermal conditions. From the dependence of glass-transition temperature (Tg) on heating rate, the activation energy for the glass transition was derived. Similarly the activation energy of the crystallization process was determined. Thermal stability of these glasses were achieved in terms of the characteristic temperatures, such as glass-transition temperature, Tg, onset temperature of crystallization, Tin, temperature corresponding to the maximum crystallization rate, Tp, beside the kinetic parameters, K(Tg) and K(Tp). The results revealed that 70B2O3-30PbO is more stable than 70B2O3-30Bi2O3. The crystallization mechanism is characterized for both 70B2O3-30Bi2O3 and 70B2O3-30PbO glasses (kinetic exponent n=2.06 for 70B2O3-30Bi2O3, and n=3.03 for 70B2O3-30PbO). The phases at which the glass crystallizes after the thermal process were identified by X-ray diffraction.  相似文献   

15.
Optical absorption, Electron Paramagnetic Resonance (EPR) studies are carried out on lead zinc phosphate glass systems doped with Cr3+ and VO2+. From optical absorption investigations the crystal-field parameters Dq, B and C are evaluated. EPR measurements on Cr3+ systems indicate that Cr3+ ions are located at sites with low symmetry. EPR spectra of vanadyl doped system revealed the characteristic nature of vanadyl ion. Spin-Hamiltonian and hyperfine values are evaluated for both the systems. Optical absorption spectra of vanadyl doped system revealed three bands that are characteristic of VO(II) ion in tetragonally distorted octahedral site. By correlating both EPR and optical data, the dipolar coupling constant (P) and Fermi-constant coupling parameter (κ) and molecular orbital coefficients β?2, eπ?2 are evaluated. Electron Paramagnetic Resonance and optical absorption studies showed that the chemical bonds of Cr3+ ions and VO2+ ions with the ligands have more covalent nature. From these studies it is also observed that lead spinals are playing major key role in sustaining the covalent nature of bonding.  相似文献   

16.
Structural analysis of x[(100−y)Ag2yMnO]·(100−x)[2B2O3·As2O3] glasses, with x=10 mol% and 0≤y≤10 mol%, was performed by means of FT-IR and FT-Raman spectroscopies. The purpose of this work is to investigate the structural changes that appear in the xAg2O·(100−x)·[2B2O3·As2O3] glasses with the addition and increase in manganese ions content. FT-IR measurements revealed the presence of pyro-, ortho-, di-, tri-, tetra- and penta-borate groups and structural units characteristic to As2O3 in the structure of the studied glasses. FT-IR spectroscopy measurements also show that BO3 units are the main structural units of the glass system. The presence of structural units characteristic to Ag2O were not directly evidenced by FT-IR spectroscopy. In addtition, the FT-Raman analysis evidenced the presence of boroxol rings in the structure of the studied glasses.  相似文献   

17.
20LiF-(30−x)Sb2O3-50B2O3:xNiO glasses with the value of x (ranging from 0 to 1.0 mol% in steps of 0.2) were prepared. A number of studies, viz. differential scanning calorimetry, optical absorption, magnetic susceptibility and thermoluminescence, on these glasses were carried out as a function of nickel ion concentration. An anomaly has been observed in all the properties of these glasses when NiO concentration is about 0.6 mol%. The results of these studies were analysed in the light of different environments of nickel ions in the glass network.  相似文献   

18.
制备了Tm3+(8.0mol%)掺杂(77-x)GeO2-xGa2O3-8Li2O-10BaO-5La2O3(x=4,8,12,16)系列玻璃.系统地研究了Ga2O3从4mol%变化到16mol%时,玻璃的光谱性质与热学性质的变化规律.差热分析表明,随着Ga2O3含量的增加,锗酸盐玻璃的热稳定性增加.运用Judd-Ofelt(J_O)理论计算得到了Tm3+在不同Ga2O3含量的GeO2-Ga2O3-Li2O-BaO-La2O3玻璃中的J-O强度参数(Ω2,Ω4,Ω6)及Tm3+各激发能级的自发跃迁概率、荧光分支比以及辐射寿命等光谱参量.在808nm激光二极管的激发下,测试并分析了Ga2O3对Tm3+荧光光谱特性的影响.随着Ga2O3从4mol%增加到16mol%,Tm3+在1.8μm处的荧光强度呈现先减弱后增强的特性.当Ga2O3含量大约在12mol%时,Tm3+在1.8μm处的荧光强度最弱,受激发射截面达到最小.还初步讨论了Ga2O3对玻璃结构与光谱参数的影响规律. 关键词: 3+掺杂锗酸盐玻璃')" href="#">Tm3+掺杂锗酸盐玻璃 光谱性能 Judd-Ofelt参数 热稳定性  相似文献   

19.
Structures of 10AgI-3Ag2O-2V2O5, 3AgI-3Ag2O---2V2O5 and 2AgI---2Ag2O-V2O5 glasses have been investigated by neutron diffraction experiments. The characteristic features of observed structure factors S(Q) in 10AgI-3Ag2O-2V2O5 glass is similar to those of other superionic conducting glasses and molten AgI. From the standpoint of the pair distribution functions, it is clarified that the Ag-I and I-I correlation strength and Ag---Ag correlation length increase with increasing AgI concentration. Observed results suggest that the local AgI structure accompanied by the re-arrangement of silver ions is formed with highly doped iodide ions.  相似文献   

20.
The 17O NMR measurement was made to elucidate the microscopic nature of vacancy motion in Y2O3-doped CeO2. Spin-lattice relaxation rate, T?11, spin-spin relaxation rate, T?12, and resonance intensity were measured at v0 = 8.13 MHz as a function of temperature [385 < T (K) < 1110] and composition [0.06 < Y2O3 (mo) < 6]. The static electric field gradient associated with lattice defects resulted in the composition dependences of the line width and the intensity. In low dopant concentrations, doubly peaked temperature dependence of T?11 was found, while a single and asymmetric peak was observed in high concentrations. T?11 of 4.0 and 6.0 mo doped samples were analyzed using a barrier height distribution model for the oxygen vacancy jump. The mean value of the activation energy was found to increase with the Y2O3 concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号