首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
A first-principles calculations, based on the norm-conserving pseudopotentials and the density functional theory (DFT) and the density functional perturbation theory (DFPT) as implemented in the ABINIT code, have been performed to investigate the structural stability, elastic, lattice dynamic and thermodynamic properties of the ordered SiGe, SiSn and GeSn cubic alloy in zinc-blende (B3) structure. The calculated lattice parameters and bulk modulus agree with the previous results. The second-order elastic constants have been calculated and other related quantities such as the Young’s modulus, shear modulus, anisotropy factor are also estimated. We also obtain the data of lattice dynamics and the temperature dependent properties currently lacking for SiGe, SiSn and GeSn. Findings are also presented for the temperature-dependent behaviors of some thermodynamic properties such as the internal energy, Helmholtz free energy, entropy and heat capacity.  相似文献   

2.
The structural, elastic, electronic, and thermodynamic properties of the cubic NaAlO3-perovskite are calculated using the full potential linearized augmented plane wave with local orbital (FP-LAPW)+lo. The exchange-correlation energy, is treated in generalized gradient approximation (GGA) using the Perdew–Burke–Ernzerhof (PBE) parameterization. The calculated equilibrium parameter is in good agreement with other works. The bulk modulus, elastic constants and their related parameters, such as Young modulus, shear modulus, and Poisson ratio were predicted. The electronic band structure of this compound has been calculated using the Angel-Vosko (EV) generalized gradient approximation (GGA) for the exchange correlation potential. We deduced that NaAlO3-perovskite exhibit a wide-gap which it is an indirect from R to Γ point. The analysis of the density of states (DOS) curves shows ionic and covalent character bond for Al–O and Na–O respectively.  相似文献   

3.
First-principles calculations, which are based on the plane-wave pseudopotential approach to the density functional theory and the density functional perturbation theory within the local density approximation, have been performed to investigate the structural, lattice dynamical and thermodynamic properties of zinc blende (B3) structure beryllium chalcogenides: BeS, BeSe and BeTe. The results of ground-state parameters and phonon dispersion are compared and contrasted with the experimental and theoretical data of previous literature. The phonon frequencies at the zone-center are analyzed. We also used the phonon density of states and quasiharmonic approximation to calculate and predict some thermodynamic properties such as entropy, heat capacity, internal energy and free energy of the B3 phase beryllium chalcogenides.  相似文献   

4.
The lattice parameters, cell volume, elastic constants, bulk modulus, shear modulus, Young's modulus and Poisson's ratio are calculated at zero pressure, and their values are in excellent agreement with the available data, for TiN, Ti2N and Ti3N2. By using the elastic stability criteria, it is shown that the three structures are all stable. The brittle/ductile behaviors are assessed in the pressures from 0 GPa to 50 GPa. Our calculations present that the performances for TiN, Ti2N and Ti3N2 become from brittle to ductile with pressure rise. The Debye temperature rises as pressure increase. With increasing N content, the enhancement of covalent interactions and decline of metallicity lead to the increase of the micro-hardness. Their constant volume heat capacities increase rapidly in the lower temperature, at a given pressure. At higher temperature, the heat capacities are close to the Dulong–Petit limit, and the heat capacities of TiN and Ti2N are larger than that of c-BN. The thermal expansion coefficients of titanium nitrides are slightly larger than that of c-BN. The band structure and the total Density of States (DOS) are calculated at 0 GPa and 50 GPa. The results show that TiN and Ti2N present metallic character. Ti3N2 present semiconducting character. The band structures have some discrepancies between 0 GPa and 50 GPa. The extent of energy dispersion increases slightly at 50 GPa, which means that the itinerant character of electrons becomes stronger at 50 GPa. The main bonding peaks of TiN, Ti2N and Ti3N2 locate in the range from −10 to 10 eV, which originate from the contribution of valance electron numbers of Ti s, Ti p, Ti d, N s and N p orbits. We can also find that the pressure makes that the total DOS decrease at the Fermi level for Ti2N. The bonding behavior of N–Ti compounds is a combination of covalent and ionic nature. As N content increases, valence band broadens, valence electron concentration increases, and covalent interactions become stronger. This is reflected in shortening of Ti–N bonds.  相似文献   

5.
First-principles calculations were preformed to study the site preference behavior and elastic properties of 3d (Ti–Cu) transition-metal elements in B2 ductility YAg alloy. In YAg, Ti is found to occupy the Y sublattice whereas V, Cr, Co, Fe, Ni and Cu tend to substitute for Ag sublattice. Due to the addition of 3d transition metals, the lattice parameters of YAg is decreased in the order: V<Cu<Cr<Ni<Co<Fe<Ti. The calculated elastic constants show that Cr, Fe, Co and Cu can improve the ductility of YAg alloy, and Fe is the most effective element to improve the ductility of YAg, while Ti, Ni and V alloying elements can reduce the ductility of YAg alloy, especially, V transforms ductile into brittle for YAg alloy. In addition, both V and Ni alloying elements can increase the hardness of YAg alloy, and Y8Ag7V is harder than Y8Ag7Ni.  相似文献   

6.
7.
We have studied some structural, thermodynamic, elastic, and electronic properties of pyrite-type SnO2 polymorph by performing ab initio calculations within the LDA approximation. The basic physical properties, in particular lattice constant, bulk modulus, second-order elastic constants (Cij), and the electronic structure, are calculated, and compared with the available experimental data. In order to gain some further information on the mechanical properties, we have also calculated the Young's modulus, Poison's ratio (ν), anisotropy factor (A), sound velocities, and Debye temperature for the same compound.  相似文献   

8.
A theoretical study of the structural, elastic and thermodynamic properties of the cubic zinc-blende (ZB) structure InN are presented in this paper by performing first principles calculations within local density approximation. The values of lattice constant, bulk modulus and its pressure derivatives and elastic constants are in excellent agreement with the available experimental data and other theoretical results. It is found that the ZB structure InN should be unstable above 20 GPa mechanically. The pressure and temperature dependencies of the bulk modulus, the heat capacity and the thermal expansion coefficient and the entropy S, as well as the Grüneisen parameter are obtained by the quasi-harmonic Debye model in the ranges of 0-1500 K and 0-25 GPa.  相似文献   

9.
The structural, elastic and electronic properties of TiC, ZrC, HfC and TaC have been investigated by first-principles calculations using the plane-wave pseudopotential method. Different exchange-correlation functionals regarding the local density approximation and the PBE, RPBE and PW91 forms of generalized gradient approximation are taken into account. The NaCl-type cubic structures of TMC (TM=Ti, Zr, Hf and Ta) are optimized and confirmed to be mechanically stable. The elastic properties such as the elastic constants, bulk modulus, shear modulus, Young’s modulus and Poisson’s ratio of TMC are investigated, and the performances of LDA and GGA are discussed. The electronic density of state, electron charge density and Mulliken population analysis have been explored to discuss the electronic properties and bonding behaviors of TMC. The present calculation results compare satisfactorily with the experimental data and previous theoretical calculations.  相似文献   

10.
The structural phase transition, elastic, thermodynamics properties of BeSe in zinc-blende were investigated by performing first-principles calculations within generalized gradient approximation. The phase transition pressure Pt between the B3 phase and the B8 phase of BeSe was determined. The pressure dependencies of elastic constants, shear modulus, Young's modulus, and Poisson's ratio of BeSe are calculated. The thermodynamic properties of the zinc-blende structure BeSe are calculated by using the quasi-harmonic Debye model. The pressure and temperature dependencies of the heat capacity and the thermal expansion coefficient, as well as the Grüneisen parameter are investigated systematically in the ranges of 0–50 GPa and 0–1200 K.  相似文献   

11.
本文利用密度泛函理论中的广义梯度近似对碳化钨晶体的三种结构(碳化钨相、闪锌矿相以及纤锌矿相)进行了优化,得到能量最低的稳定构型,并在此基础上计算了它的力学、电子、光学和高温高压下的热力学性质.研究表明:在0~300 GPa压力范围内,碳化钨相具有最高的稳定性.同时,高压下碳化钨相的弹性常数满足Born-Huang准则,且0 GPa和300 GPa下的声子色散没有虚频,证明了高压下碳化钨相的静力学稳定性和动力学稳定性.电子性质表明了碳化钨的金属性.光学性质表明碳化钨在高能区很难吸收光.热力学性质的研究表明:体积比V/V_0对压强的变化更敏感;高温时C_V曲线近似一条直线;给定压强下热膨胀系数α在600 K温度以上增长非常缓慢;压强对德拜温度Θ_D的影响较大;在低压下格林艾森系数γ的变化较大.  相似文献   

12.
Electronic structures, elastic properties and thermal stabilities of Mg17Al12, Mg2Si and Al2Y have been determined from first-principle calculations. The calculated heats of formation and cohesive energies show that Al2Y has the strongest alloying ability and structural stability. The brittle behavior and structural stability mechanism is also explained through the electronic structures of these intermetallic compounds. The elastic constants are calculated, the bulk moduli, shear moduli, Young's moduli and Poisson ratio value are derived, the brittleness and plasticity of these phases are discussed. Gibbs free energy, Debye temperature and heat capacity are calculated and discussed.  相似文献   

13.
The structural, phase transition, elastic, lattice dynamic and thermodynamic properties of rare-earth compounds PrP and PrAs with NaCl (B1), CsCl (B2), ZB (B3), WC (Bh) and CuAu (L10) structures are investigated using the first principles calculations within the generalized gradient approximation (GGA). For the total-energy calculation, we have used the projected augmented plane-wave (PAW) implementation of the Vienna Ab-initio Simulation Package (VASP). Specifically, some basic physical parameters, e.g. lattice constants, bulk modulus, elastic constants, shear modulus, Young's modulus and Poison's ratio, are predicted. The obtained equilibrium structure parameters are in excellent agreement with the experimental and theoretical data. The temperature and pressure variations of the volume, bulk modulus, thermal expansion coefficient, heat capacity and Debye temperature are calculated in wide pressure and temperature ranges. The phonon dispersion curves and corresponding one-phonon density of states (DOS) for both compounds are also computed in the NaCl (B1) structure.  相似文献   

14.
Structural, elastic and mechanical properties of orthorhombic SrHfO3 under pressure have been investigated using the plane-wave ultrasoft pseudopotential technique based on the first-principles density functional theory. The calculated equilibrium lattice parameters and elastic constants of orthorhombic SrHfO3 at zero pressure are in good agreement with the available experimental and calculational values. The lattice parameters, total enthalpy, elastic constants and mechanical stability of orthorhombic SrHfO3 as a function of pressure were studied. With the increasing pressure, the lattice parameters and volume of orthorhombic SrHfO3 decrease whereas the total enthalpy increases. Orthorhombic SrHfO3 is mechanically stable with low pressure (<52.9 GPa) whereas that is mechanically instable with high pressure (>52.9 GPa). The bulk modulus, shear modulus, Young's modulus and mechanical anisotropy of orthorhombic SrHfO3 as a function of pressure were analyzed. It is found that orthorhombic SrHfO3 under pressure has larger bulk modulus, better ductility and less mechanical anisotropy than orthorhombic SrHfO3 at 0 GPa.  相似文献   

15.
First principles FLAPW-GGA calculations have been performed to understand the peculiarities of stability, elastic, electronic properties and chemical bonding for cubic carbides of four noble metals M=Rh, Pd, Ir and Pt depending on carbon stoichiometry: MC versus M4C. Our main findings are as follows: (i) in contrast to mono-carbides MC with positive formation energies Eform>0, carbon-deficient sub-carbides M4C are stable (Eform<0), thus carbon stoichiometry is one of the major factors determining successful synthesis of these materials, and (ii) as distinct from the majority of other 3d-5d metals (including Pd and Pt examined here), an unusual effect of Rh and Ir “metallization” and the increasing of ductility for these metals owing to the introduction of carbon has been established.  相似文献   

16.
李晓凤  彭卫民  申筱  姬广富  赵峰 《物理学报》2009,58(4):2660-2666
采用密度泛函理论中平面波基矢,模守恒赝势结合局域密度近似以及广义梯度近似对固态Kr在高压下的结构以及弹性性质进行了研究, 通过计算发现弹性常数,Debye温度以及声速都随压力的增大而增大,所计算的弹性常数与实验和其他的理论符合的很好. 利用Debye模型得到了固态Kr的热力学性质, 熵随压力的增大而减小,随温度升高而升高;而定容热容Cv,定压热容Cp则随温度升高而升高,而且Cv在达到一定温度时趋于定值,所得的热力学性质和实验值是相符的.最后还预测了固态Kr在高压下的电子结构和光学性质, 计算结果表明随压力的增加固态Kr的前沿能带变窄,光吸收系数增大,吸收峰增宽,电子更容易发生跃迁,固态Kr有可能转化为半导体. 关键词: Kr 第一性原理 弹性常数 光学性质  相似文献   

17.
The geometric, electronic, and magnetic properties of silicene nanoflakes (SiNFs) and corresponding two-dimensional (2D) framework assembled by SiNFs are studied by first-principles calculations. We find that the hexagonal SiNFs exhibit semiconducting behavior, while the triangular SiNFs is magnetic. Although the triangular SiNFs linked directly is antiferromagnetic, the system linked with an odd-number Si chains can exhibit ferromagnetic (FM) behavior, which is ascribed to anti-parallel spin rule on Si atoms, consistent with the Lieb–Mattis criterion. More interestingly, the 2D framework composed of triangular SiNFs linked by a Si atom shows a half-metallic character with an integer magnetic moment. These results provide a better understanding for silicene-based nanoflakes, and expect to pave an avenue to assemble FM silicon materials in spintronics.  相似文献   

18.
Runyue Li 《哲学杂志》2016,96(35):3654-3670
First-principles calculations were performed to investigate the structural properties, phase stabilities, elastic properties and thermal conductivities of MP (M = Ti, Zr, Hf) monophosphides. These monophosphides are thermodynamically and mechanically stable. Values for the bulk modulus B, shear modulus G, Young’s modulus E and Poisson’s ratio ν were calculated by Voigt–Reuss–Hill approximation. The mechanical anisotropy was discussed via several anisotropy indices and three-dimensional (3D) surface constructions. The order of elastic anisotropy is ZrP > HfP > TiP. The minimum thermal conductivities of these monophosphides were investigated using Clarke’s model and Cahill’s model. The results revealed that these monophosphides are suitable for use as thermal insulating materials and that their minimum thermal conductivities are anisotropic.  相似文献   

19.
Mo2FeB2具有耐高温、耐磨、高强度,是一种良好的硼基金属陶瓷材料,在模具领域有很广阔的应用前景.本文采用第一性原理计算的方法,研究了Nb元素掺杂Mo2FeB2合金的结构稳定性、弹性、硬度和电子结构.结合能和生成焓的计算结果表明,Nb在Mo2FeB2中更容易占据Fe位置,并且在Fe位掺Nb的Mo2FeB2比在Mo位处掺Nb具有更好的力学性能.此外,计算结果还表明,Nb掺杂可以提高Mo2FeB2的剪切模量、杨氏模量、体积模量和硬度,但塑性略有下降,合适的掺杂浓度应为2.5 at.%.电子结构计算结果表明,Nb掺杂Mo2FeB2力学性能的提高可归因于Nb-B共价键的形成.  相似文献   

20.
The structural, electronic and elastic properties of potassium hexatitanate (K2Ti6O13) whisker were investigated using first-principles calculations. The calculated cell parameters of K2Ti6O13 including lattice constants and atomic positions are in good agreement with the experimental data. The obtained formation enthalpy (−61.1535 eV/atom) and cohesive energy (−137.4502 eV/atom) are both negative, showing its high structural stability. Further analysis of the electronic structures shows that the potassium hexatitanate is a wide-band semiconductor. Within K2Ti6O13 crystal, the TiO bonding interactions are stronger than that of KO, while no apparent KTi bonding interactions can be observed. The structural stability of K2Ti6O13 was closely associated with the covalent bond interactions between Ti (d) and O (p) orbits. Further calculations on elastic properties show that K2Ti6O13 is a high stiffness and brittle material with small anisotropy in shear and compression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号