首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Magnetotransport properties of magnetite thin films deposited on gallium arsenide and sapphire substrates at growth temperatures between 473 and 673 K are presented. The films were grown by UV pulsed laser ablation in reactive atmospheres of O2 and Ar, at working pressure of 8 × 10−2 Pa. Film stoichiometry was determined in the range from Fe2.95O4 to Fe2.97O4. Randomly oriented polycrystalline thin films were grown on GaAs(1 0 0) while for the Al2O3(0 0 0 1) substrates the films developed a (1 1 1) preferred orientation. Interfacial Fe3+ diffusion was found for both substrates affecting the magnetic behaviour. The temperature dependence of the resistance and magnetoresistance of the films were measured for fields up to 6 T. Negative magnetoresistance values of ∼5% at room temperature and ∼10% at 90 K were obtained for the as-deposited magnetite films either on GaAs(1 0 0) or Al2O3(0 0 0 1).  相似文献   

2.
Fe films with strong preferred orientation were prepared on Al2O3 (0 0 0 1) substrates by a new two-step method using low-pressure metal-organic chemical vapor deposition (LP-MOCVD) method. X-ray diffraction (XRD) and a vibrating sample magnetometer were employed to characterize the structure and magnetic properties of the Fe films before and after thermal reduction, which was performed in hydrogen flow at 723–1023 K. XRD patterns indicate that the films changed into α-Fe (bcc) mono-phase from a mixture of α-Fe2O3 and/or Fe (bcc).  相似文献   

3.
The effect of the crystalline quality of ultrathin Co films on perpendicular exchange bias (PEB) has been investigated using a Au/Co/Au/α-Cr2O3 thin film grown on a Ag-buffered Si(1 1 1) substrate. Our investigation is based on the effect of the Au spacer layer on the crystalline quality of the Co layer and the resultant changes in PEB. An α-Cr2O3(0 0 0 1)layer is fabricated by the thermal oxidization of a Cr(1 1 0) thin film. The structural properties of the α-Cr2O3(0 0 0 1) layer including the cross-sectional structure, lattice parameters, and valence state have been investigated. The fabricated α-Cr2O3(0 0 0 1) layer contains twin domains and has slightly smaller lattice parametersthan those of bulk-Cr2O3. The valence state of the Cr2O3(0 0 0 1) layer is similar to that of bulk Cr2O3. The ultrathin Co film directly grown on the α-Cr2O3(0 0 0 1) deposited by an e-beam evaporator is polycrystalline. The insertion of a Au spacer layer with a thickness below 0.5 nm improves the crystalline quality of Co, probably resulting in hcp-Co(0 0 0 1). Perpendicular magnetic anisotropy (PMA) appears below the Néel temperature of Cr2O3 for all the investigated films. Although the PMA appears independently of the crystallinequality of Co, PEB is affected by the crystalline quality of Co. For the polycrystalline Co film, PEB is low, however, a high PEB is observed for the Co films whose in-plane atom arrangement is identical to that of Cr3+ in Cr2O3(0 0 0 1). The results are qualitatively discussed on the basis of the direct exchange coupling between Cr and Co at the interface as the dominant coupling mechanism.  相似文献   

4.
Ab initio total energy Hartree-Fock calculations of ultrathin films of α-Al2O3 on (0 0 0 1) α-Cr2O3 templates are presented. The surface relaxation, the in-plane reconstruction and the surface and strain energies of the slabs are studied as a function of alumina film thickness. The surface Al layer is found to relax inwards considerably, with the magnitude of the inwards relaxation depending on the thickness of the ultrathin alumina film in a non-linear manner. The calculations also reveal that ultrathin films of alumina lower the surface energy of (0 0 0 1) α-chromia substrates. This indicates that the (0 0 0 1) α-chromia surface provides favourable conditions for the templated growth of α-alumina. However, increasing the alumina film thickness is found to give rise to a significant increase in strain energy. Finally, the electronic properties at the surface of the (0 0 0 1) α-Al2O3/α-Cr2O3 slabs are investigated. Here it is found that the alumina coating gives rise to an increase in the covalency of the bonds at the surface of the slabs. In contrast, the influence of an alumina layer on the electrostatic potential at the surface of the chromia slab is relatively minor, which should also be beneficial for the templated growth of α-alumina on (0 0 0 1) α-chromia substrates.  相似文献   

5.
S.D. Sartale 《Surface science》2006,600(22):4978-4985
The growth of Pt nanoclusters on thin film Al2O3 grown on NiAl(1 0 0) was studied by using scanning tunneling microscopy (STM). The samples were prepared by vapor depositing various amounts of Pt onto the Al2O3/NiAl(1 0 0) at different substrate temperatures in ultra high vacuum (UHV). The STM images show that sizeable Pt nanoclusters grow solely on crystalline Al2O3 surface. These Pt clusters appear to be randomly distributed and only a few form evident alignment patterns, contrasting with Co clusters that are highly aligned on the crystalline Al2O3. The size distributions of these Pt clusters are rather broader than those of the Co clusters on the same surface and the sizes are evidently smaller. With increasing coverage or deposition temperature, the number of larger clusters is enhanced, while the size of the majority number of the clusters remains around the same (0.4 nm as height and 2.25 nm as diameter), which differs drastically from the Pt clusters on γ-Al2O3/NiAl(1 1 0) observed earlier. These Pt cluster growth features are mostly attributed to smaller diffusion length and ease to form stable nucleus, arising from strong Pt-Pt and Pt-oxide interactions and the peculiar protrusion structures on the ordered Al2O3/NiAl(1 0 0). The thermal stability of Pt nanoclusters was also examined. The cluster density decreased monotonically with annealing temperature up to 1000 K at the expense of smaller clusters but coalescence is not observed.  相似文献   

6.
Nd2Hf2O7 (NHO) thin films have been epitaxially grown by pulsed laser deposition (PLD) on Ge(1 1 1) substrates. In situ reflection high-energy electron diffraction (RHEED) evolution of the (1 1 1)-oriented NHO during the deposition has been investigated and shows that the epilayer has a twin-free character with type-B stacking. Interfacial structure of NHO/Ge has been examined by high-resolution transmission electron microscopy (HRTEM). The results indicate a highly crystalline film with a very thin interface, and the orientation relationship between NHO and Ge can be denoted as (1 1 1)NHO//(1 1 1)Ge and . Finally, twin-free epitaxial growth of NHO with type-B orientation displays temperature dependence and the type-B epitaxy is favored at high temperature.  相似文献   

7.
In this paper ZnO films are grown on GaAs/Al2O3 substrates at different temperature by metal-organic chemical vapor deposition (MOCVD). The GaAs/Al2O3 substrates are formed by depositing GaAs layer (∼35 nm) on the Al2O3 substrate. The results of X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) demonstrate that most of the Ga and As atoms form Ga-As bond and the GaAs layer does not present any orientation. The characters of the ZnO films grown on GaAs/Al2O3 substrates are investigated by XRD, photoluminescence (PL), atomic force microscopy (AFM) and Raman scattering. Compared with ZnO film grown on Al2O3 substrate, ZnO film prepared by our fabrication scheme has good crystal and optical quality. Meanwhile its grain size becomes bigger according to the AFM image. Raman analysis indicates that the intrinsic defects and the in-plane tensile stress are obviously reduced in ZnO/GaAs/Al2O3 samples.  相似文献   

8.
Sandwich-structure Al2O3/HfO2/Al2O3 gate dielectric films were grown on ultra-thin silicon-on-insulator (SOI) substrates by vacuum electron beam evaporation (EB-PVD) method. AFM and TEM observations showed that the films remained amorphous even after post-annealing treatment at 950 °C with smooth surface and clean silicon interface. EDX- and XPS-analysis results revealed no silicate or silicide at the silicon interface. The equivalent oxide thickness was 3 nm and the dielectric constant was around 7.2, as determined by electrical measurements. A fixed charge density of 3 × 1010 cm−2 and a leakage current of 5 × 10−7A/cm2 at 2 V gate bias were achieved for Au/gate stack /Si/SiO2/Si/Au MIS capacitors. Post-annealing treatment was found to effectively reduce trap density, but increase in annealing temperature did not made any significant difference in the electrical performance.  相似文献   

9.
280 nm-thick Ni films were deposited on SiO2/Si(1 0 0) and MgO(0 0 1) substrates at 300 K, 513 K and 663 K by a direct current magnetron sputtering system with the oblique target. The films deposited at 300 K mainly have a [1 1 0] crystalline orientation in the film growth direction. The [1 1 0]-orientation weakens and the [1 1 1]- and [1 0 0]-orientations enhance with increasing deposition temperature. The lattice constant of the Ni films is smaller than that of the Ni bulk, except for the film grown on MgO(0 0 1) at 663 K. Furthermore, as the deposition temperature increases, the lattice constant of the films grown on the SiO2/Si(1 0 0) decreases whereas that of the films grown on the MgO(0 0 1) increases. The films deposited at 300 K and 513 K grow with columnar grains perpendicular to the substrate. For the films deposited at 663 K, however, the columnar grain structure is destroyed, i.e., an about 50 nm-thick layer consisting of granular grains is formed at the interface between the film and the substrate and then large grains grow on the layer. The Ni films deposited at 300 K consist of thin columnar grains and have many voids at the grain boundaries. The grains become thick and the voids decrease with increasing deposition temperature. The resistivity of the film decreases and the saturation magnetization increases with increasing deposition temperature.  相似文献   

10.
(1 0 0) oriented BaNb2O6 films have been successfully grown on LaAlO3 (1 0 0) substrate at 750 °C or 450 °C in vacuum by pulsed laser deposition. The deposited BaNb2O6 PLD films exhibit room-temperature ferromagnetism. Ab initio calculations demonstrate that stoichiometric BaNb2O6 and that with barium vacancy are nonmagnetic, while oxygen and niobium vacancy can induce magnetism due to the spin-polarization of Nb s electrons and O p electrons respectively. Moreover, ferromagnetic coupling is energetically more favorable when two Nb/O vacancies are located third-nearest-neighbored. The observed room temperature ferromagnetism in BaNb2O6 films should be mainly induced by oxygen vacancies introduced during vacuum deposition, with certain contribution by Nb vacancies.  相似文献   

11.
Epitaxial Fe(1 1 0) films with thicknesses of 100-800 nm on Cu(0 0 1) and Ni(0 0 1) buffer layers grown on MgO(0 0 1) substrates have been fabricated. These films contain Fe(1 1 0) crystallites which are in the Pitsch orientation relationship. Magnetization and the fourfold in-plane magnetic anisotropy constants of these films have been determined by torque measurements. All the samples under study are characterized by a fourfold magnetic anisotropy with easy axes parallel to the [1 0 0] and [0 1 0] directions of Cu(0 0 1) and Ni(0 0 1) layers. The measured values of the constant for Fe(1 1 0)/Cu(0 0 1) are found to depend on deposition temperature; a maximum value of (2.5±0.1)×105 erg/cm3 is reached after annealing at 600 °С. The in-plane torque measurements on Fe(1 1 0)/Ni(0 0 1) bilayers obtained at 300 °С, on the other hand, exhibit a constant value of (2.7±0.1)×105 erg/cm3. Assuming an exchange interaction between the Fe(1 1 0) crystallites, which are in the Pitsch orientation relationship, the fourfold in-plane magnetic anisotropy has been calculated as 2.8×105 erg/cm3. The deviations of the experimental values from the predicted one may be explained by the formation of a polycrystalline phase within the Fe(1 1 0) layer and a partial disorientation of the epitaxial crystallites.  相似文献   

12.
We present experimental results on the structural and magnetic properties of series of Fe thin films evaporated onto Si(1 1 1), Si(1 0 0) and glass substrates. The Fe thickness, t, ranges from 6 to110 nm. X-ray diffraction (XRD) and atomic force microscopy (AFM) have been used to study the structure and surface morphology of these films. The magnetic properties were investigated by means of the Brillouin light scattering (BLS) and magnetic force microscopy (MFM) techniques. The Fe films grow with (1 1 0) texture; as t increases, this (1 1 0) texture becomes weaker for Fe/Si, while for Fe/glass, the texture changes from (1 1 0) to (2 1 1). Grains are larger in Fe/Si than in Fe/glass. The effective magnetization, 4πMeff, inferred from BLS was found to be lower than the 4πMS bulk value. Stress induced anisotropy might be in part responsible for this difference. MFM images reveal stripe domain structure for the 110 nm thick Fe/Si(1 0 0) only.  相似文献   

13.
Epitaxial In2O3 films have been deposited on Y-stabilized ZrO2 (YSZ) (1 0 0) substrates by metalorganic chemical vapor deposition (MOCVD). The films were deposited at different substrate temperatures (450-750 °C). The film deposited at 650 °C has the best crystalline quality, and observation of the interface area shows a clear cube-on-cube epitaxial relationship of In2O3(1 0 0)||YSZ(1 0 0) with In2O3[0 0 1]||YSZ[0 0 1]. The Hall mobility of the single-crystalline In2O3 film deposited at 650 °C is as high as 66.5 cm2 V−1 s−1 with carrier concentration of 1.5 × 1019 cm−3 and resistivity of 6.3 × 10−3 Ω cm. The absolute average transmittance of the obtained films in the visible range exceeds 95%.  相似文献   

14.
GaN nanowires have been successfully synthesized on Si(1 1 1) substrates by magnetron sputtering through ammoniating Ga2O3/Cr thin films at 950 °C. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), FT-IR spectrophotometer, scanning electron microscopy (SEM), high-resolution transmission electron microscopy (TEM), and photoluminescence (PL) spectrum were carried out to characterize the microstructure, morphology, and optical properties of GaN samples. The results demonstrate that the nanowires are single-crystal GaN with hexagonal wurtzite structure and high-quality crystalline, have the size of 30-80 nm in diameter and several tens of microns in length with good emission properties. The growth direction of GaN nanowires is perpendicular to the fringe of (1 0 1) plane. The growth mechanism of GaN nanowires is also discussed in detail.  相似文献   

15.
Highly textured bismuth oxide (Bi2O3) thin films have been prepared using anodic oxidation of electrodeposited bismuth films onto stainless steel substrates. The Bi2O3 films were uniform and adherent to substrate. The Bi2O3 films were characterized for their structural and electrical properties by means of X-ray diffraction (XRD), electrical resistivity and dielectric measurement techniques. The X-ray diffraction pattern showed that Bi2O3 films are highly textured along (1 1 1) plane. The room temperature electrical resistivity of the Bi2O3 films was 105 Ω cm. Dielectric measurement revealed normal oxide behavior with frequency.  相似文献   

16.
We present results on the growth and magnetic anisotropies of Co75Fe25 films grown on a Cu(1 1 0) single crystal. Angular dependent MOKE measurements show a thickness dependent, in-plane rotation of the easy axis of magnetisation of up to 60° from the [0 0 1] direction (towards [−1 1 0]). For a film thickness of 5 ML, just greater than that required for the onset of ferromagnetism, uniaxial anisotropy is observed with the easy axis along the [0 0 1] direction. As the film thickness increases this is seen to rotate in-plane towards the [−1 1 0] direction as the contribution from the cubic anisotropy constant grows. At a film thickness of 9 ML there is predominantly cubic anisotropy and at 10 ML the easy axis is rotated to 150° with respect to the [1 −1 0] axis, where it is stabilised.  相似文献   

17.
Ba(Zr0.20Ti0.80)O3 (BZT) thin films are deposited on Pt(1 1 1)/Ti/SiO2/Si, MgO and ZrO2 buffered Pt(1 1 1)/Ti/SiO2/Si substrates by a sol-gel process. The BZT thin films directly grown on Pt(1 1 1)/Ti/SiO2/Si substrates exhibit highly (1 1 1) preferred orientation, while the films deposited on Pt(1 1 1)/Ti/SiO2/Si substrates with MgO and ZrO2 buffer layers show highly (1 1 0) preferred orientation. At 100 kHz, dielectric constants are 417, 311 and 321 for the BZT thin films grown on Pt(1 1 1)/Ti/SiO2/Si, MgO and ZrO2 buffered Pt(1 1 1)/Ti/SiO2/Si substrates, respectively. The difference in dielectric properties of three BZT films can be attributed to the series capacitance effect, interface conditions and their orientations.  相似文献   

18.
The effects of oxygen pressure during deposition on microstructure and magnetic properties of strontium hexaferrite (SrFe12O19) films grown on Si (100) substrate with Pt (111) underlayer by pulsed laser deposition have been investigated. X-ray diffraction pattern confirms that the films have c-axis perpendicular orientation. The c-axis dispersion (Δθ50) increases and c-axis lattice parameter decreases with increasing oxygen pressure. The films have hexagonal shape grains with diameter of 150-250 nm as determined by atomic force microscopy. The coercivities in perpendicular direction are higher than those in in-plane direction, which shows the films have perpendicular magnetic anisotropy. The saturation magnetization and anisotropy field for the film deposited in oxygen pressure of 0.13 mbar are comparable to those of the bulk strontium hexaferrite. Higher oxygen pressure leads to the films having higher coercivity and squareness. The coercivity in perpendicular and in-plane directions of the film deposited in oxygen pressure of 0.13 mbar are 2520 Oe and 870 Oe, respectively.  相似文献   

19.
Modified substrates with nanometer scale smooth surface were obtained via coating a layer of CaO-Al2O3-SiO2 (CaAlSi) high temperature glaze with proper additives on the rough-95% Al2O3 ceramics substrates. (Ba0.6Sr0.4)TiO3 (BST) thin films were deposited on modified Al2O3 substrates by radio-frequency magnetron sputtering. The microstructure, dielectric, and insulating properties of BST thin films grown on glazed-Al2O3 substrates were investigated by X-ray diffraction (XRD), atomic force microscope (AFM), and dielectric properties measurement. These results showed that microstructure and dielectric properties of BST thin films grown on glazed-Al2O3 substrates were almost consistent with that of BST thin films grown on LaAlO3 (1 0 0) single-crystal substrates. Thus, the expensive single-crystal substrates may be substituted by extremely cheap glazed-Al2O3 substrates.  相似文献   

20.
With reflection high-energy electron diffraction (RHEED) and scanning-tunnelling microscopy (STM), we made measurements on Co and Pt nanoclusters grown by vapour deposition on a thin film of Al2O3/NiAl(1 0 0). The results show that the annealed Co nanoclusters (with mean diameters 2.5, 3.4, 5.8 nm and heights 0.7, 1.5, 1.5 nm, respectively) and Pt nanoclusters (with mean diameter 2.25 nm and height 0.4 nm) are highly crystalline and that their structures are significantly affected by the oxide substrate. Structural analysis based on the RHEED patterns indicates that both Co and Pt clusters have a fcc phase and grow with their (0 0 1) facets parallel to the θ-Al2O3(1 0 0) surfaces, and with their [1 1 0] and [−1 1 0] axes along the [0 1 0] and [0 0 1] directions of the oxide surface, respectively, so (Co(0 0 1)[1 1 0]∥Al2O3(1 0 0)[0 1 0] and Pt(0 0 1)[1 1 0]∥Al2O3(1 0 0)[0 1 0]). This growth is optimal as the Co and Pt fcc (0 0 1) facets match well with the oxygen mesh. To minimize the lattice mismatch, the lattice parameter of the Co clusters expands 4-5% relative to fcc Co bulk, whereas the lattice parameter of the Pt clusters remains near the bulk value, as the Pt fcc (0 0 1) plane has a close lattice match with the oxide surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号