首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report the laser-induced voltage (LIV) effects in c-axis oriented Bi2Sr2Co2Oy thin films grown on (0 0 1) LaAlO3 substrates with the title angle α of 0°, 3°, 5° and 10° by a simple chemical solution deposition method. A large open-circuit voltage with the sensitivity of 300 mV/mJ is observed for the film on 10° tilting LaAlO3 under a 308 nm irradiation with the pulse duration of 25 ns. When the film surface is irradiated by a 355 nm pulsed laser of 25 ps duration, a fast response with the rise time of 700 ps and the full width at half maximum of 1.5 ns is achieved. In addition, the experimental results reveal that the amplitude of the voltage signal is approximately proportional to sin 2α and the signal polarity is reversed when the film is irradiated from the substrate side rather than the film side, which suggests the LIV effects in Bi2Sr2Co2Oy thin films originate from the anisotropic Seebeck coefficient of this material.  相似文献   

2.
The Bi0.9Sb0.1 powders were prepared by mechanical alloying and then pressed under 6 GPa at different pressing temperatures. X-ray diffraction spectra showed that the single phase was formed. The nanostructure of grain was observed by bright-field imaging. Electrical conductivity, Seebeck coefficient, and thermal conductivity had been investigated in the temperature range of 80-300 K. The absolute Seebeck coefficient value of 120.3 μV/K was measured at 130 K. The figure-of-merit reached a maximum value of 0.90×10−3 K−1 at 140 K.  相似文献   

3.
Sn-filled CoSb3 skutterudite compounds were synthesized by the induction melting process. Formation of a single δ-phase of the synthesized materials was confirmed by X-ray diffraction analysis. The temperature dependences of the Seebeck coefficient, electrical resistivity and thermal conductivity were examined in the temperature range of 300-700 K. Positive Seebeck and Hall coefficients confirmed p-type conductivity. Electrical resistivity increased with increasing temperature, which shows that the Sn-filled CoSb3 skutterudite is a degenerate semiconductor. The thermal conductivity was reduced by Sn-filling because the filler atoms acted as phonon scattering centers in the skutterudite lattice. The lowest thermal conductivity was achieved in the composition of Sn0.25Co8Sb24.  相似文献   

4.
Samples of La0.7Ca0.3Mn1−xGaxO3 with x=0, 0.025, 0.05 and 0.10 were prepared by standard solid-state reaction. They were first characterized chemically, including the microstructure. The magnetic properties and various transport properties, i.e. the electrical resistivity, magnetoresistivity (for a field below 8 T), thermoelectric power and thermal conductivity measured each time on the same sample, are reported. The markedly different behaviour of the x=0.1 sample from those with a smaller Ga content, is discussed. The dilution of the Mn3+/Mn4+ interactions with Ga doping considerably reduces the ferromagnetic double exchange interaction within the manganese lattice leading to a decrease of the Curie temperature. The polaron binding energy varies from 224 to 243 meV with increased Ga doping.  相似文献   

5.
The nanocrystalline materials with the general formula Bi85Sb15−xNbx (x=0, 0.5, 1, 2, 3) were prepared by mechanical alloying and subsequent high-pressure sintering. Their transport properties involving electrical conductivity, Seebeck coefficient and thermal conductivity have been investigated in the temperature range of 80-300 K. The absolute value of Seebeck coefficient of Bi85Sb13Nb2 reaches a maximum of 161 μV/K at 105 K, which is 69% larger than that of Bi85Sb15 at the same temperature. The power factor and figure-of-merit are 4.45×10−3 WK−2m−1 at 220 K and 1.79×10−3 K−1 at 196 K, respectively. These results suggest that thermoelectric properties of Bi85Sb15 based material can be improved by Nb doping.  相似文献   

6.
通过脉冲电沉积,外延生长出小单元长度的Bi2Te3/Sb超晶格纳米线.借助哈曼方法,测量了超晶格纳米线阵列的热电性能,330 K时的ZT值可达0.15.研究了Bi2Te3/Sb超晶格纳米线阵列器件的制冷或者加热能力,发现器件的上下表面的最大温差可以达到6.6 K.  相似文献   

7.
The effects of oxygen doping on the hole-carrying CuO2-layers in Tl2(Ba1−xSrx)2Ca2Cu3Oy were studied by combined chemical and valence analysis, Tc measurements and neutron diffraction. The highest Tc is characterized by an optimal excess oxygen content, Δy, dichotomizing the under- and over-doped regions for each Sr concentration. While the average Tl valence is close to 3.0 and independent of Δy, the average Cu valence shows a linear dependence with Δy. An increase of the flatness of the CuO2 plane, characterized by the O(2)-Cu(2)-O(2) bond angle of ∼176°, was observed at the optimal Δy.  相似文献   

8.
利用密度泛函理论结合玻尔兹曼输运理论计算体相和双层二维MoS2/MoSe2异质材料的热电性质. 计算表明,体相MoS2/MoSe2异质材料的热电性质比之于MoSe2会有较大程度的提高. 该异质材料热电性质的提高主要源于异质材料本身带隙的减小以及层间的范德瓦尔斯相互作用. 二维MoS2/MoSe2异质材料存在热电应用的可能性.  相似文献   

9.
Deposition of HfO2 films on n-type 4H-SiC substrates by sol-gel spin-on coating technique has been performed and the physical and electrical characteristics of this film as a function of annealing temperature (550, 750, and 850 °C for 30 min) have been reported. The physical properties of the film have been characterized using a Filmetrics and X-ray diffractometer, while conduction atomic force microscope and semiconductor parameter analyzer were used for electrical characterization. Phase transformation has been revealed in the oxide as the annealing temperature changed. Refractive index, relative density, dielectric constant of the film, and oxide-semiconductor interface trap density have been extracted and related to the leakage current through the oxide. It has been recorded that, oxide annealed at 700 °C has demonstrated the lowest leakage current and the best oxide reliability. The reasons of these observations have been explained.  相似文献   

10.
La and Co co-doped BiFeO3 ((Bi1−xLax)(Fe0.95Co0.05)O3 (x=0, 0.10, 0.20, 0.30)) ceramics were prepared by tartaric acid modified sol–gel method. The X-ray diffraction patterns indicate a transition from rhombohedral structure to tetragonal structure at x=0.20, which has been confirmed by the Raman measurements. The band gap increases with increasing x to 0.20, and then decreases with further increasing x to 0.30. The structural transition has significant effects on the multiferroic properties. The remnant magnetization and saturate ferromagnetic magnetization decrease abruptly with increasing x to 0.10, and then gradually increase with further increasing x up to 0.30. The coercivity is significantly reduced with increasing La doping concentration. The ferroelectricity has been improved by La doping, and the polarization increases with increasing x to 0.10, then decreases with further increasing x up to 0.30. The simultaneous coexistence of soft ferromagnetism and ferroelectricity at room temperature in tetragonal Bi0.70La0.30Fe0.95Co0.05O3 indicates the potential multiferroic applications.  相似文献   

11.
Electrical conductivity and Seebeck coefficient for the Bi2−xYxRu2O7 pyrochlores with x=0.0,0.5,1.0,1.5,2.0 were measured in the temperature range of 473-1073 K in air. With increasing Bi content, the temperature dependence of the electrical conductivity changed from semiconducting to metallic. The signs of the Seebeck coefficient were positive in the measured temperature range for all the samples, indicating that the major carriers were holes. The temperature dependence of the Seebeck coefficient for the Y2Ru2O7 indicated the thermal activation-type behavior of the holes, while that for the Bi2−xYxRu2O7 with x=0.0-1.5 indicated the itinerant behavior of the holes. The change in the conduction behavior from semiconductor to metal with increasing Bi content is consistent with the increase in the overlap between the Ru4d t2g and O2p orbitals, but the mixing of Bi6s, 6p states at EF may not be ruled out. The thermoelectric power factors for the Bi2−xYxRu2O7 with x=1.5 and 2.0 were lower than 10−5 W m−1 K−2 and those with x=0.0,0.5,1.0 were around 1-3×10−5 W m−1 K−2.  相似文献   

12.
Skutterudite compounds PbxBayCo4Sb11.5Te0.5 (x≤0.23,y≤0.27) with bcc crystal structure have been prepared by the high pressure and high temperature (HPHT) method. The study explored a chemical method for filling Pb and Ba atoms into the voids of CoSb3 to optimize the thermoelectric figure of merit ZT in the system of PbyBaxCo4Sb11.5Te0.5. The structure of PbxBayCo4Sb11.5Te0.5 skutterudites was evaluated by means of X-ray diffraction. The Seebeck coefficient, electrical resistivity and power factor were performed from room temperature to 710 K. Compared with Co4Sb11.5Te0.5, the thermal conductivity of Pb and Ba double-filled samples was reduced evidently. Among all filled samples, Pb0.03Ba0.27Co4Sb11.5Te0.5 showed the highest power factor of 31.64 μW cm−1 K−2 at 663 K. Pb0.05Ba0.25Co4Sb11.5Te0.5 showed the lowest thermal conductivity of 2.73 W m−1 K−1 at 663 K, and its maximum ZT value reached 0.63 at 673 K.  相似文献   

13.
Bi2Te2.7Se0.3 nanowire arrays have been fabricated by electrodeposition into the pores of an anodic aluminum oxide (AAO) template followed by annealing at 300 °C under Ar atmosphere. The as-prepared nanowires were characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy and energy dispersive X-ray spectroscopy. The nanowires are uniform single crystalline with diameter of ∼14 nm.  相似文献   

14.
The 1D organic salt TTF[Ni(dmit)2]2 becomes superconductor with Tc=1.6 K under an applied hydrostatic pressure of 7 kbar. Structural determinations in this system lead us to suspect that superconductivity (SC) coexists with a charge density wave (CDW) instability at low pressure. In order to better understand how SC emerge from a CDW and to revisit the pressure–temperature phase diagram of the TTF[Ni(dmit)2]2 we performed transport and thermoelectric power measurements under pressure.  相似文献   

15.
We report stress dependence of growth characteristics of epitaxial γ-Na0.7CoO2 films on various substrates deposited by pulsed laser deposition method. On the sapphire substrate, the γ-Na0.7CoO2 thin film exhibits spiral surface growth with multi-terraces and highly crystallized texture. For the γ-Na0.7CoO2 thin film grown on the (1 1 1) SrTiO3 substrate, the nano-islands of ∼30 nm diameter on the hexagonal grains are observed. These islands indicate that the growth mode changes from step-flow growth mode to Stranski-Krastanow (SK) growth mode. On the (1 1 1) MgO substrate, the large grains formed by excess adatoms covering an aperture between hexagonal grains are observed. These experimental demonstrations and controllability could provide opportunities of strain effects of NaxCoO2, physical properties of thin films, and growth dynamics of heterogeneous epitaxial thin films.  相似文献   

16.
Dielectric properties are reported on polycrystalline cubic ordered-perovskite cuprate Sr2Cu(Re0.69Ca0.31)O6 in the frequency range 10 Hz-100 kHz at temperature from 300 to 500 K. Both the dielectric permittivity and dielectric loss factor are found to be frequency and temperature dependent. The enhanced value of the low frequency dielectric permittivity is associated to ionic polarization and interfacial phenomena. The material is found to possess significantly high dielectric permittivity. The calculated ac conductivity suggests semiconducting behaviour for the Sr2Cu(Re0.69Ca0.31)O6.  相似文献   

17.
The composition dependence of the mean magnetic moment of cobalt atoms in Y(FexCo1-x)2 compounds is analysed in the local environment model. Cobalt has a magnetic moment of 1.56 μB if there are at least two Fe atoms as nearest neighbours. The maximum in the composition dependence of the transition metal moments is due to the magnetic contributions of iron atoms only. The thermal variation of reciprocal susceptibility obeys a Curie-Weiss behaviour, in addition to the Pauli paramagnetic term. Finally, the influence of the variable magnetic interactions on the transition metal moments is discussed.  相似文献   

18.
Co4Sb12−xTex compounds were prepared by mechanical alloying combined with cold isostatic pressing, and the effects of Te doping on the thermoelectric properties were studied. The electronic structure of Te-doped and undoped CoSb3 compounds has been calculated using the first-principles plane-wave pseudo-potential based on density functional theory. The experimental and calculated results show that the value of the solution limit x of Te in Co4Sb12−xTex compounds is between 0.5 and 0.7. The Fermi surface of CoSb3 is located between the conduction band and the valence band, and its electrical resistivity decreases with increasing temperature. The density of states is mainly composed of Co 3d and Sb 5p electrons for intrinsic CoSb3.The Fermi surface of Te-doped compounds moves to the conduction band and its electrical resistivity increases with increasing temperature, exhibiting n-type degenerated semiconductor character. Under the conditions of the experiment, the maximum value 2.67 mW/m K2 of the power factor for Co4Sb11.7Te0.3 is obtained at 600 K; this is about 14 times higher than that of CoSb3.  相似文献   

19.
We have studied crystal structure and transport properties of the quasi one-dimensional cobalt oxide CaCo2O4. The CaCo2O4 phase crystallizes in calcium-ferrite type structure, which consists of a corner- and edge-shared CoO6 octahedron network including one-dimensional double chains. Large thermoelectric power (S  150 μV/K at 390 K) with metallic temperature dependence of S, moderate resistivity (ρ  2.9 × 10−1 Ω cm at 390 K) with carrier localization at low temperature, and normal thermal conductivity (κ  6.3 W/Km at 390 K) were observed. The phonon mean-free path was calculated from the observed data, as a function of temperature. The long phonon mean-free path (l  24 Å at 300 K) implies that the thermal conductivity could be suppressed by impurity scattering of phonons with partial element substitution.  相似文献   

20.
Band bending and band alignment at HfO2/SiO2/Si and HfO2/Hf/SiO2/Si interfaces were investigated using X-ray photoelectron spectroscopy. After Hf-metal pre-deposition, a 0.55 eV band bending in Si and a 1.80 eV binding energy decrease for Hf 4f and O 1s of HfO2 were observed. This was attributed to the introduction of negative space charges at interface by Hf pre-deposition. Band bending decrease and synchronous binding energy increases of O 1s and Hf 4f for HfO2 were observed during initial Ar+ sputtering of the Hf pre-deposited sample. This was interpreted through the neutralization of negative space charges by sputtering-induced oxygen vacancies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号