首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
丛超  吴大建  刘晓峻 《物理学报》2011,60(4):46102-046102
基于时域有限差分方法研究了几何形状、入射电场偏振方向、管壁厚度及内核和包埋介质的变化对椭圆截面金纳米管局域表面等离激元共振特性的影响.研究发现,当长轴固定时,短轴的减小将导致纳米管消光峰红移;入射电场偏振方向与椭圆长轴夹角的增大将导致消光峰红移;当颗粒整体尺寸不变时,管壁厚度减小同样会使得消光峰红移.此外,内核及包埋介质介电常数的增大均导致消光峰红移.利用等离激元杂化理论及自由电子和振荡电子竞争机理对上述现象进行了理论分析. 关键词: 消光光谱 局域表面等离激元共振 金纳米管 时域有限差分方法  相似文献   

2.
张兴坊*  闫昕 《物理学报》2013,62(3):37805-037805
理论研究了金纳米球壳的几何结构参数, 及物理参量对局 域表面等离激元共振波长调谐特性的影响. 结果表明, 随着壳层厚度的增大, 球壳消光共振峰先蓝移后红移, 高阶峰转向时对应的壳层厚度比低阶峰大, 且该厚度与球壳内径的比值随内径尺寸的增大而减小, 随内核材料或外界环境介电常数的增大而增大, 散射共振峰也有类似的移动规律. 利用电子杂化效应和相位延迟效应对该现象进行了理论解释.  相似文献   

3.
丛超  吴大建  刘晓峻  李勃 《物理学报》2012,61(3):37301-037301
相对于单一金属纳米材料,二金属复合纳米材料具有更大的潜在应用价值.基于时域有限差分方法,研究了SiO2-Ag-Au和SiO2-Au-Ag二金属三层纳米管的消光光谱,并对其局域表面等离激元共振(Localized Surface Plasmon Resonance,LSPR)特性进行了分析.研究发现,内核尺寸变大将导致上述两种金属纳米管LSPR峰红移;内层金属及外层金属壳层厚度增大均会导致其LSPR峰蓝移.银壳厚度变化对纳米管LSPR的调制作用大于金壳厚度变化造成的影响.上述现象可以利用等离激元杂化理论及自由电子和振荡电子变化的竞争机制进行分析.  相似文献   

4.
We report the results of our theoretical studies of the optical properties of hybrid nanoparticles consisting of the metal core covered with molecular J-aggregates. We evaluate the cross sections of absorption and scattering of light by such particles on the basis of the extended Mie theory for two concentric spheres with material dielectric functions that take into account the size effect associated with scattering of free electrons from the core/shell interface. We carry out our calculations in a wide range of light wavelengths and geometrical parameters of the composite system for silver and gold core and for a J-aggregate shell composed of different cyanine dyes. The results obtained demonstrate the quite different behavior of the extinction spectra of such particles caused by the different strengths of interaction between the Frenkel exciton and the dipolar or multipolar plasmons. We pay particular attention to the investigation of spectral peak positions associated with the eigenfrequencies of hybrid modes in the system and peak intensities as functions of reduced oscillator strength in the molecular J-band for various relationships between the core radius and shell thickness. This provides an efficient means for the explanation of the main features in the optical properties of metal/J-aggregate nanoparticles and can be used for an effective control of the plasmon–exciton coupling strength in such hybrid complexes.  相似文献   

5.
The results of the theoretical study of optical properties of composite nanoparticles consisting of a metal core (Ag, Au, Cu, Al, Ni, Cr) and a J-aggregate shell of organic dye are presented. Light extinction, absorption, and scattering coefficients in colloidal solutions were calculated within the model based on the Mie theory modified taking into account dimensional phenomena and complemented by calculations of complex dielectric functions of the metal core and J-aggregate shell. The model adequately explains the features observed in light absorption and scattering spectra by hybrid nanoparticles, associated with the plasmon resonance in the metal core and with electronic excitation of the J-aggregate. The strong dependence of the results on geometrical parameters of nanoparticles and dielectric constants of core and shell materials was demonstrated. Methods for controlling the effects of the plasmon-exciton interaction in the system and optical properties of composite materials developed based on nanoparticles under study are discussed.  相似文献   

6.
金纳米球壳光学吸收的Mie理论分析   总被引:1,自引:0,他引:1       下载免费PDF全文
吴大建  Liu Xiao-Jun 《物理学报》2008,57(8):5138-5142
基于Mie散射理论研究了金壳厚度变化、内核尺寸变化及内核介质变化下金纳米球壳的吸收光谱.研究发现,随着金壳厚度的增加,颗粒光学吸收增加到最大值后逐渐降低;随着内核尺寸逐渐增加,金壳颗粒的光学吸收最大值逐渐减小.此外,还发现随着内核介电常数的增大,颗粒的光学吸收逐渐减弱,当内核为空心时,吸收最强.利用等离激元杂化理论及自由电子和振荡电子变化的竞争机制对上述现象进行了理论分析. 关键词: 金纳米球壳 等离激元共振 吸收光谱  相似文献   

7.
刘强  程新路  李德华  杨则金 《物理学报》2010,59(12):8829-8835
基于密度泛函理论第一性原理方法计算了Al和N共掺对Zn1-xMgxO在紫外光波段和可见光波段光学性质的影响.计算结果表明:光学性质变化主要发生在低能区,在高能区光学性质基本保持不变.介电函数虚部、吸收光谱和消光系数计算表明,Al和N共掺后Zn1-xMgxO的光学吸收边产生红移,对部分紫外光和可见光的吸收增强.介电函数实部和反射光谱计算表明,Al和N共掺后Zn1-xMgxO的反射峰强度增大,静态介电常数ε1(0)从2.64增大为3.23.能量损失谱的计算表明,Al和N共掺后Zn1-xMgxO的等离子体共振频率发生蓝移,共振频率的振幅增大.  相似文献   

8.
Planar structures consisting of oxidized copper granules obtained by laser electrodispersion are studied. The samples have different packing densities of granules and different amounts of their chains and aggregates. Each granule 5.5 ± 0.5 nm in size consists of a copper core with an amorphous structure and an oxide shell of about 0.7 nm thick. Some granules are randomly charged. The spectra of coherent transmission, diffusion transmission, and reflection of the samples are measured. Using the experimental data, the absorption spectra and the effective absorption, extinction, and scattering coefficients of monolayers are calculated and the luminescence spectra are estimated. A long-wavelength shift of the plasmon resonance of the copper granules with oxide shells as compared to that of the unoxidized granules is observed. The shift depends on the thickness of the oxide layer. A similar shift of the plasmon resonance is observed for the chains of copper granules. The spectra are compared with the spectra calculated theoretically taking into account some parameters of the planar structures and the size dependence of the optical constants of copper. The luminescence observed in some cases is associated with specifics of oxidation of copper granules.  相似文献   

9.
A new strategy is reported to fabricate Cu@MxOy (M = Cu, Mn, Co, Fe) nanocable arrays using five‐fold twinned copper (Cu) nanowire (NW) arrays as starting materials, to promote both the cycling stability and high rate capability of MxOy as anodes for LIBs. Conductive Cu NW arrays were synthesized on Cu foil via chemical vapor deposition (CVD), followed by the oxidation of their surface so as to form Cu@Cu2O nanocable arrays. The thickness of the active material (Cu2O) on the Cu NW arrays can be tuned from 20 nm to 160 nm by simply controlling the oxidation time. Based on this accurate control, the optimal coating thickness of Cu2O was determined to be around 35 nm. Additionally, the Cu2O active material shell can be easily transformed to other metal oxides with even higher specific capacities via a “coordinating etching” strategy based on Pearson's principle, resulting in Cu@MxOy nanocable arrays (M = Mn, Co, Fe). When applied as electrodes for LIBs, these 3D electrodes show long cycle lives (over 300 cycles) and high rate capabilities.  相似文献   

10.
A highly water-dispersible NaYF4:Ce/Tb (core), NaYF4:Ce/Tb@NaYF4(core/shell) and NaYF4:Ce/Tb@NaYF4@SiO2 (core/shell/SiO2) nanoparticles (NPs) were synthesized via a general synthesis approach. The growth of an inert NaYF4 and silica shell (~14 nm) around the core-NPs resulted in an increase of the average size of the nanopaticles as well as broadening of their size distribution. The optical band-gap energy slightly decreases after shell formation due to the increase the crystalline size. To optimize the influence of shell formation a comparative analysis of photoluminescence properties (excitation, emission, and luminescence decay time) of the core, core/shell, and core/shell/SiO2 NPs were measured. The emission intensity was significantly enhanced after inert shell formation around the surface of the core NPs. The Commission International de l’Eclairage chromaticity coordinates of the emission spectrum of core, core/shell, core/shell/SiO2 NPs lie closest to the standard green color emission at 545 nm. By quantitative spectroscopic measurements of surface-modified core-NPs, it was suggested that encapsulation with inert and silica layers was found to be effective in retaining both luminescence intensity and dispersibility in aqueous environment. Considering the high aqueous dispersion and enhanced luminescence efficiency of the core-NPs make them an ideal luminescent material for luminescence bioimaging and optical biosensors.  相似文献   

11.
张逸新  许强 《物理学报》1999,48(4):735-743
研究了满足Rayleigh-Gans-Debye(RGD)近似条件的球形稀溶液的光学和粒径多分散性耦合的动态光散射技术检测问题.在分析中采用了球壳L和球核R-L都连续变化且壳层变化满足L=αR (其中α<1和R是壳球半径)的壳-核硬球模型.得出了在溶剂折射率nm和壳层折射率ns匹配时,即nm=ns,平均散射强度I(q)和等效扩散系数De(q)与散射矢q间的关系.给出了用以检测窄分散系统小多分散性 关键词:  相似文献   

12.
The electronic and optical properties of Cu, CuO and Cu(2)O were studied by x-ray photoelectron spectroscopy (XPS) and reflection electron energy-loss spectroscopy (REELS). We report detailed Cu 2p, Cu LVV, O 1s and O KLL spectra which are in good agreement with previous results. REELS spectra, recorded for primary energies in the range from 150 to 2000 eV, were corrected for multiple inelastically scattered electrons to determine the effective inelastic scattering cross section. The dielectric functions and optical properties were determined by comparing the experimental inelastic electron scattering cross section with a simulated cross section calculated within the semi-classical dielectric response model in which the only input is Im(-1/ε) by using the QUEELS-ε(k,ω)-REELS software package. By Kramers-Kronig transformation of the determined Im(-1/ε), the real and imaginary parts (ε(1) and ε(2)) of the dielectric function, and the refractive index n and extinction coefficient k were determined for Cu, CuO, and Cu(2)O in the 0-100 eV energy range. Observed differences between Cu, CuO and Cu(2)O are mainly due to modifications of the 3d and O 2p electron configurations.  相似文献   

13.
The electronic energy-band structure, density of states (DOS), and optical properties of AgBO3 in the paraelectric cubic phase have been studied by using density functional theory within the local density approximation for exchange-correlation for the first time. The band structure shows a band gap of 1.533 eV (AgNbO3)and 1.537 eV (AgTaO3)at (M-⌈)point in the Brillouin zone. The optical spectra of AgBO3 in the photon energy range up to 30 eV are investigated under the scissor approximation. The real and imaginary parts of the dielectric function and — thus the optical constants such as reflectivity, absorption coefficient, electron energy-loss function, refractive index, and extinction coefficient — are calculated. We have also made some comparisons with related experimental and theoretical data that is available.   相似文献   

14.
MgxZn1-xO材料是一种新型光电功能材料.采用溶胶凝胶法在石英玻璃上制备了Mg0.25Zn0.75O薄膜,理论结合实验研究了Mg0.25Zn0.75O薄膜的结构和光学性能.研究表明,石英玻璃衬底上Mg0.25Zn0.75O薄膜呈六方纤锌矿结构,薄膜均匀,平均粒径约为20nm.吸收光谱表明吸收带边始于3 关键词: 0.25Zn0.75O薄膜')" href="#">Mg0.25Zn0.75O薄膜 溶胶凝胶法 石英玻璃衬底 紫外发光  相似文献   

15.
The nanocrystalline Gd2O3:Eu3+ powders with cubic phase were prepared by a combustion method in the presence of urea and glycol. The effects of the annealing temperature on the crystallization and luminescence properties were studied. The results of XRD show pure phase can be obtained, the average crystallite size could be calculated as 7, 8, 15, and 23 nm for the precursor and samples annealed at 600, 700 and 800 °C, respectively, which coincided with the results from TEM images. The emission intensity, host absorption and charge transfer band intensity increased with increasing the temperature. The slightly broad emission peak at 610 nm for smaller particles can be observed. The ratio of host absorption to O2−-Eu3+ charge transfer band of smaller nanoparticles is much stronger compared with that for larger nanoparticles, furthermore, the luminescence lifetimes of nanoparticles increased with increasing particles size. The effects of doping concentration of Eu3+ on luminescence lifetimes and intensities were also discussed. The samples exhibited a higher quenching concentration of Eu3+, and luminescence lifetimes of nanoparticles are related to annealing temperature of samples and the doping concentration of Eu3+ ions.  相似文献   

16.
The extinction spectroscopy and near-field enhancement of dielectric-silver nanoshell coated by tetrahedral amorphous carbon [ta-C] layer (DSC) have been calculated by using Mie theory. With decreasing the Ag layer thickness, the localized surface plasmon resonance (LSPR) of DSC nanoshell moves from the visible region into the near-infrared region and the corresponding local field factor (LFF) increases first and then decreases. In addition, the increase of ta-C shell thickness leads to red-shift of LSPR and the decrease of LFF in DSC nanoshell. We further find that the increase of the dielectric constant for the outer shell can induce a significant enhancement of near-field. Based on the simulation analysis, we show that the DSC nanoshell can provide strong near-field in near-infrared region and may be suitable for the biomedical applications in vivo.  相似文献   

17.
《Physics letters. A》2019,383(21):2542-2550
Present research interest is to highlight on the manufacturing of core-shell nanoparticles because of core activity with unique properties and surface modification by a shell in the diverse fields (e.g. optoelectronic, catalysis and magneto-optics). In addition, the combined optical properties of magnetic-plasmonic core-shell NPs make them ideal candidates for many applications in biomedical fields. The influence of Fe-core and Au-shell for the formation of the core-shell viz. spherical and spheroidal nanostructures is studied using the discrete dipole approximation method. DDA is an approximation method and its accuracy is compared to Mie theory results for spherical core-shell NPs as Mie theory gives the exact solution to spherical targeted NPs. DDA calculations are further extended to spheroidal core-shell nanostructures. It is observed that the localized surface plasmon resonance (LSPR) peak position in considered core-shell nanostructures is enhanced by changing the cores and shell thickness in the core-shell spherical nanostructures and aspect ratio as well as shell thickness in spheroidal core-shell nanostructures. The absorption spectra are found between 363–788 nm wavelength ranges and can be tuned into UV-visible-near-infrared region of the electromagnetic (EM) spectrum in accordance with desired applications. It has been found that the Fe@hollow@Au and prolate core-shell nanostructures show enhancement to LSPR peaks, bandwidth and their corresponding intensities in comparison to other considered spherical and spheroidal core-shell nanostructures. Tunability in core size, shell thickness, aspect ratio, and configuration will open new potential uses of suitable magnetic-plasmonic core-shell nanostructures in cancer therapy, tissue engineering, drug delivery, and many more of biomedical fields.  相似文献   

18.
We report nanoscale ab-initio calculations of the linear optical and electronic properties of LaCrO3 in nonmagnetic cubic and rhombohedral phases using the full potential linear augmented plane wave (FP-LAPW) method. In this work the generalized gradient approximation is used for exchange-correlation potential. The dielectric tensor is derived within random-phase approximation. We present results for the band structure, density of states, imaginary and real parts of dielectric tensor, electron energy loss spectroscopy, sum rules, reflectivity, refractive index and extinction coefficient. The regions of transparent, absorption and reflection are discussed. We are not aware of any published experimental or theoretical data for these phases, so our calculations can be used to cover this lack of data for these phases.  相似文献   

19.
当电子振动频率与入射光的频率相同时,部分金属纳米颗粒可以在其表面激发局部表面等离子共振效应(LSPR),该波长下颗粒的吸收增强。这种效应也被应用于增强拉曼光谱信号的强度。本文研究了以Ag为外壳材料、Si为内核的核壳结构纳米颗粒粒子系的吸收特性。采用时域有限差分方法求解了颗粒随机分布粒子系的吸收率,分析了颗粒体积分数、内核外壳尺寸、椭球化等因素对粒子系吸收特性的影响以及对吸收峰的调控作用。  相似文献   

20.
To extend the optical property characterization of metal–Cu2O polyhedra, 50 nm Au@Cu cubic cores are used to fabricate Au@Cu–Cu2O core–shell cubes, octahedra, and rhombic dodecahedra with tunable sizes. Despite the unusually large lattice mismatch of 15.1% between Cu and Cu2O, fine adjustment in the volumes of reagents introduced allows the formation of these heterostructures. To relieve the lattice strain, the metal cores are essentially never found to locate at the particle center, and slight lattice spacing shifts are recorded. Although efforts are made to reduce the heterostructure sizes, the Cu2O shells are generally too thick to reveal surface plasmon resonance (SPR) absorption band from the metal cores. Only the Au@Cu–Cu2O cubes with many cores located near the particle corners show observable SPR band red‐shift, but UV–vis spectra of all particle shapes are still dominated by Cu2O absorption and light scattering bands. Au@Cu–Cu2O cubes consistently show the most red‐shifted absorption bands than those of octahedra resulting from the optical facet effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号