首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on the framework of effective-mass approximation and variational approach, optical properties of exciton are investigated theoretically in ZnO/MgxZn1−xO vertically coupled quantum dots (QDs), with considering the three-dimensional confinement of electron and hole pair and the strong built-in electric field effects due to the piezoelectricity and spontaneous polarization. The exciton binding energy, the emission wavelength and the oscillator strength as functions of the different structural parameters (the dot height and the barrier thickness between the coupled wurtzite ZnO QDs) are calculated with the built-in electric field in detail. The results elucidate that structural parameters have a significant influence on the exciton state and optical properties of ZnO coupled QDs. These results show the optical and electronic properties of the quantum dot that can be controlled and also tuned through the nanoparticle size variation.  相似文献   

2.
Based on the framework of effective-mass approximation and variational approach, optical properties of exciton are investigated theoretically in ZnO/MgxZn1−xO vertically coupled quantum dots (QDs), with considering the three-dimensional confinement of electron and hole pair and the strong built-in electric field effects. The exciton binding energy, the emission wavelength and the oscillator strength as functions of the structural parameters (the dot height, the barrier thickness between the coupled wurtzite ZnO QDs and Mg content x in the barrier layers) is calculated in detail. The results elucidate that Mg content have a significant influence on the exciton state and optical properties of ZnO coupled QDs. When Mg content x increases, the strong built-in electric field increases and leads to the redshift of the effective band gap of the MgxZn1−xO layer. These theoretical results are useful for design and application of some important photoelectronic devices constructed by using ZnO strained QDs.  相似文献   

3.
The binding energies of a hydrogenic donor in a GaN/AlGaN quantum dot are calculated in the influence of magnetic field. The calculations are carried out using the single-band effective mass approximation within a variational scheme. The magnetic field induced binding energy and diamagnetic susceptibility of the hydrogenic donor are obtained as a function of dot radius. Calculations have been carried out with and without the Zeeman effect through the energy-dependent effective mass. The diamagnetic shift of the hydrogenic donor is found for different dot radii. Our results show that (i) the binding energy is higher for smaller dot radii and the magnetic field effects are predominant for larger dot sizes, (ii) the binding energy is higher when the Zeeman effect is included for all the magnetic fields, (iii) the diamagnetic susceptibility increases with the magnetic field and is not pronounced for smaller dot radii and (iv) the diamagnetic shift has a good influence of larger dot radii.  相似文献   

4.
Based on the effective-mass approximation and variational procedure, ionized donor bound exciton (D+, X) states confined in strained wurtzite (WZ) GaN/AlxGa1-xN cylindrical (disk-like) quantum dots (QDs) with finite-height potential barriers are investigated, with considering the influences of the built-in electric field (BEF), the biaxial strain dependence of material parameters and the applied hydrostatic pressure. The Schrödinger equation via the proper choice of the donor bound exciton trial wave function is solved. The behaviors of the binding energy of (D+, X) and the optical transition associated with (D+, X) are examined at different pressures for different QD sizes and donor positions. In our calculations, the effective masses of electron and hole, dielectric constants, phonon frequencies, energy gaps, and piezoelectric polarizations are taken into account as functions of biaxial strain and hydrostatic pressure. Our results show that the hydrostatic pressure, the QD size and the donor position have a remarkable influence on (D+, X) states. The hydrostatic pressure generally increases the binding energy of (D+, X). However, the binding energy tends to decrease for the QDs with large height and lower Al composition (x<0.3) if the donor is located at z0≤0. The optical transition energy has a blue-shift (red-shift) if the hydrostatic pressure (QD height) increases. For the QDs with small height and low Al composition, the hydrostatic pressure dependence of the optical transition energy is more obvious. Furthermore, the relationship between the radiative decay time and hydrostatic pressure (QD height) is also investigated. It is found that the radiative decay time increases with pressure and the increment tendency is more prominent for the QDs with large height. The radiative decay time increases exponentially reaching microsecond order with increasing QD height. The physical reason has been analyzed in depth.  相似文献   

5.
In this work, the structure of InxGa1−xN/GaN quantum dots solar cell is investigated by solving the Schrödinger equation in light of the Kronig-Penney model. Compared to p-n homojunction and heterojunction solar cells, the InxGa1−xN/GaN quantum dots intermediate band solar cell manifests much larger power conversion efficiency. Furthermore, the power conversion efficiency of quantum dot intermediate band solar cell strongly depends on the size, interdot distance and gallium content of the quantum dot arrays. Particularly, power conversion efficiency is preferable with the location of intermediate band in the middle of the potential well.  相似文献   

6.
Pressure-induced binding energies of an exciton and a biexciton are studied taking into account the geometrical confinement effect in a CdTe/ZnTe quantum dot. Coulomb interaction energy is obtained using Hartree potential. The energy eigenvalue and wave functions of exciton and the biexciton are obtained using the self-consistent technique. The effective mass approximation and BenDaniel-Duke boundary conditions are used in the self-consistent calculations. The pressure-induced nonlinear optical absorption coefficients for the heavy hole exciton and the biexciton as a function of incident photon energy for CdTe/ZnTe quantum dot are investigated. The optical gain coefficient with the injection current density, in the presence of various hydrostatic pressure values, is studied in a CdTe/ZnTe spherical quantum dot. The pressure-induced threshold optical pump intensity with the dot radius is investigated. The results show that the pressure-induced electronic and optical properties strongly depend on the spatial confinement effect.  相似文献   

7.
In the framework of perturbation theory, a variational method is used to study the ground state of a donor bound exciton in a weakly prolate GaAs/Ga1−xAlxAs ellipsoidal finite-potential quantum dot under hydrostatic pressure. The analytic expressions for the Hamiltonian of the system have been obtained and the binding energy of the bound exciton is calculated. The results show that the binding energy decreases as the symmetry of the dot shape reduces. The pressure and Al concentration have a considerable influence on the bound exciton. The binding energy increases monotonically as the pressure or Al concentration increases, and the influence of pressure or Al concentration is more pronounced for small quantum dot size.  相似文献   

8.
ZnO nanorod arrays were synthesized by chemical-liquid deposition techniques on MgxZn1−xO (x = 0, 0.07 and 0.15) buffer layers. It is found that varying the Mg concentration could control the diameter, vertical alignment, crystallization, and density of the ZnO nanorods. The X-ray diffraction (XRD), transmission electron microscopy (TEM), and selected area electron diffraction (SAED) data show the ZnO nanorods prefer to grow in the (0 0 2) c-axis direction better with a larger Mg concentration. The photoluminescence (PL) spectra of ZnO nanorods exhibit that the ultraviolet (UV) emission becomes stronger and the defect emission becomes weaker by increasing the Mg concentration in MgxZn1−xO buffer layers.  相似文献   

9.
Two variants of CuPtB-type orderings in strained CdxZn1−xTe epilayers were investigated by using transmission electron microscopy (TEM) and selected area diffraction pattern (SADP) measurements. The TEM images on the Cd0.15Zn0.85Te epilayers depicted strong contrast modulations along the [110] direction, and the SADP images showed superstructure reflection spots corresponding to a CuPtB-type ordering. Possible crystal structures for the two variants of CuPtB-type ordering in the CdxZn1−xTe epilayers, which were determined from the SADP images, are presented.  相似文献   

10.
The energy spectra and dispersion relations of carriers in the presence of an electric field applied along the growth direction in ZnO/MgxZn1−xO multiple quantum wells (MQW) are calculated using the asymptotic transfer method (ATM) on the basis of the quasistationary state approximation. The energy spectra of the carriers induce some quasi-bound levels under electric fields. The dispersion relations for the energy of the ground state and lower excitation states still have parabolic shapes for both the electrons and the heavy holes in the presence of a moderate electric field. Our results also reveal that the number of energy levels increases with increasing number of ZnO quantum wells and that the energies increase with both increasing Mg composition x and electric field strength.  相似文献   

11.
In this paper, we studied the nonlinear optical properties of a negative donor center (D) in a disk-like quantum dot (QD) with a Gaussian confining potential. Calculations are carried out by using the method of numerical diagonalization of Hamiltonian matrix within the effective-mass approximation. A detailed investigation of the linear, third-order nonlinear, total optical absorptions and refractive index changes has been carried out for the D QD and the D0 QD. The linear, third-order nonlinear, total optical absorptions and refractive indices have been examined for a double-electron QD with and without impurity. Our results show that the optical absorption coefficients and refractive indices in a disk-like QD are much larger than their values for quantum wells and spherical QDs and the nonlinear optical properties of QDs are strongly affected not only with the confinement barrier height, dot radius, the number of electrons but also the electron-impurity interaction.  相似文献   

12.
Exciton binding energy of a confined heavy hole exciton is investigated in a Zn1−xMgxS/ZnS/Zn1−xMgxS single strained quantum well with the inclusion of size dependent dielectric function for various Mg content. The effects of interaction between the exciton and the longitudinal optical phonon are brought out. The effect of exciton is described by the effective potential between the electron and hole. The interband emission energy as a function of well width is calculated for various Mg concentration with and without the inclusion of dielectric confinement. Non-linear optical properties are carried out using the compact density matrix approach. The dependence of nonlinear optical processes on the well width is investigated for different Mg concentration. The linear, third order non-linear optical absorption coefficients values and the refractive index changes of the exciton are calculated for different concentration of magnesium content. The results show that the exciton binding energy is found to exceed LO phonon energy of ZnS for x>0.2 and the incorporation of magnesium ions and the effect of phonon have great influence on the optical properties of ZnS/Zn1−xMgxS quantum wells.  相似文献   

13.
We investigate the optical properties of two-dimensional periodic arrays of well-aligned MgxZn1−xO nanowires, i.e., MgxZn1−xO nanowire photonic crystals. The nanowire photonic crystal can exhibit a photonic band gap in the visible range. As the mole fraction of Mg, x, increases, the edge frequencies of the band gap increase and the band gap size decreases. The characteristics of relative band gap and vacant point defect mode are also studied with varying x. From the finite-difference time-domain simulations, we show that the light extraction from nanowires can be controlled by varying the distance between optically excited nanowires and a waveguide, and the mole fraction of Mg. Controlling the light extraction from nanostructures can be useful in the implementation of nanoscale light emitting devices.  相似文献   

14.
The structural, electronic, and optical properties of CdxZn1 − xSe alloys are investigated using the first-principles plane-wave pseudopotential method within the LDA approximations. In particular, the lattice constant, bulk modulus, electronic band structures, density of state, and optical properties such as dielectric functions, refractive index, extinction coefficient and energy loss function are calculated and discussed. Our results agree well with the available data in the literature.  相似文献   

15.
A series of CdxZn1−xS thin films have been deposited on glass substrates using spray pyrolysis technique. The crystallinity and microstructure of CdxZn1−xS thin films have been investigated by X-ray diffraction (XRD). Based on the results of Hall measurements, the films obtained were an n-type semiconductor. The X-ray data analysis of CdxZn1−xS thin films showed that the grain size of the CdxZn1−xS increased with increase in Cd composition. It is observed that the band gap increases as the Cd composition decreases. The results also showed a blue shift of absorption edge of optical transmission spectra is increases as Zn ratio increases. The effects of Cd composition on the structural and optical properties of CdxZn1−xS thin films were related to their grain size, stress and carrier concentration.  相似文献   

16.
Total and partial density of states, frequency dependent complex refractive index including extinction coefficient, optical conductivity and transmission of MgxZn1−xO (0≤x≤1) in rocksalt and wurtzite phases are calculated using full potential linearized augmented plane wave (FP-LAPW) method. The real part of refractive index decreases while the extinction coefficient, optical conductivity and transmission for rocksalt phase increases with the increase in Mg concentration. In wurtzite phase, ordinary and extraordinary indices decrease while extinction coefficient, optical conductivity and transmission increase in parallel as well as perpendicular to c-axis with the increase in the Mg concentration.  相似文献   

17.
Structural, electronic and optical properties as well as structural phase transitions of ternary alloy CdxZn1 − xS have been investigated using the first-principles calculations based on the density functional theory. We found that the crystal structure of CdxZn1 − xS alloys transforms from wurtzite to zinc blende as Cd content of x=0.83x=0.83. Effect of Cd content on electronic structures of CdxZn1 − xS alloys has been studied. The bandgaps of CdxZn1 − xS alloys with wurtzite and zinc blende structures decrease with the increase of Cd content. Furthermore, dielectric constant and absorption coefficient also have been discussed in detail.  相似文献   

18.
MgxZn1−xO alloy films were prepared on sapphire substrates using Ar and N2 as the sputtering gases. The effect of the sputtering gas on the structural, optical and electrical properties of the MgxZn1−xO films was studied. By using N2 as the sputtering gas, the MgxZn1−xO film shows p-type conductivity and the band gap is larger than that employing Ar as the sputtering gas. The reason for this phenomenon is thought to be related to the reaction between N-O or N-Zn, and the N-doping.  相似文献   

19.
We had prepared Mn-doped ZnO and Li, Mn codoped-ZnO films with different concentrations using spin coating method. Crystal structure and magnetic measurements demonstrate that the impurity phases (ZnMnO3) are not contributed to room temperature ferromagnetism and the ferromagnetism in Mn-doped ZnO film is intrinsic. Interesting, saturated magnetization decreases with Mn or Li concentration increase, showing that some antiferromagnetism exists in the samples with high Mn or Li concentration. In addition, Mn0.05Zn0.95O film annealed in vaccum shows larger ferromagnetism than the as-prepared sample and more oxygen vacancies induced by annealing in reducing atmosphere enhance ferromagnetism, which supports the bound magnetic polaron model on the origin of room temperature ferromagnetism.  相似文献   

20.
Reflection high-energy electron diffraction, atomic force microscopy, transmission electron microscopy, and double-crystal X-ray curves showed that high-quality InAs quantum dot (QD) arrays inserted into GaAs barriers were embedded in an Al0.3Ga0.7As/GaAs heterostructure. The temperature-dependent photoluminescence (PL) spectra of the InAs/GaAs QDs showed that the exciton peak corresponding interband transition from the ground electronic subband to the ground heavy-hole subband (E1-HH1) was dominantly observed and that the peak position and the full width at half maximum corresponding to the interband transitions of the PL spectrum were dependent on the temperature. The activation energy of the electrons confined in the InAs/GaAs QDs was 115 meV. The electronic subband energy and the energy wave function of the Al0.3Ga0.7As/GaAs heterostructures were calculated by using a self-consistent method. The electronic subband energies in the InAs/GaAs QDs were calculated by using a three-dimensional spatial plane wave method, and the value of the calculated (E1-HH1) transition in the InAs/GaAs QDs was in reasonable agreement with that obtained from the PL measurement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号