首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ternary polycrystalline Zn1−xCdxO semiconductor films with cadmium content x ranging from 0 to 0.23 were obtained on quartz substrate by pulse laser deposited (PLD) technique. X-ray diffraction measurement revealed that all the films were single phase of wurtzite structure grown on c-axis orientation with its c-axis lattice constant increasing as the Cd content x increasing. Atomic force microscopy observation revealed that the grain size of Zn1−xCdxO films decreases continuously as the Cd content x increases. Both photoluminescence and optical measurements showed that the band gap decreases from 3.27 to 2.78 eV with increasing the Cd content x. The increase in Cd content x also leads to the broadening of the emission peak. The resistivity of Zn1−xCdxO films decreases evidently for higher values of Cd content x. The shift of PL emission to visible light as well as the decrease of resistivity makes the Zn1−xCdxO films potential candidate for optoelectronic device.  相似文献   

2.
Fe-doped (Ba1−xSrx)TiO3 ceramics were prepared by solid-state reaction, and ferromagnetism was realized at room temperature. The microstructure and magnetism were modified by the Sr concentration control (0≤x≤75 at%) at a fixed Fe concentration, and the relevant magnetic exchange mechanism was discussed. All the samples are shown to have a single perovskite structure. When increasing the Sr concentration, the phase structure is transformed from a hexagonal perovskite into a cubic perovskite, with a monotonic decrease in lattice parameters induced by ionic size effect. The room-temperature ferromagnetism is expected to originate from the super-exchange interactions between Fe3+ on pentahedral and octahedral Ti sites mediated by the O2− ions. The increase in Sr addition modifies two main influencing factors in magnetic properties: the ratio of pentahedral to octahedral Fe3+ and the concentration of oxygen vacancies, leading to a gradually enhanced saturation magnetization. The highest value, obtained for Fe-doped (Ba0.25Sr0.75)TiO3, is an order of magnitude higher than that of the Fe-doped BaTiO3 system with similar Fe concentration and preparation conditions, which may indicate (Ba1−xSrx)TiO3 as a more suitable matrix material for multiferroic research.  相似文献   

3.
Injection of spin-polarized current into spintronic devices is a challenge to the semiconductor physicists and technologists. II-VI compound semiconductors can act as the spin aligner on the top of GaAs light emitting diode. However, II-VI compound semiconductor like Cd1−xMnxTe is still suffering from contacting problem. Application of electroless deposited magnetic NiP:Mn contact would enhance efficient current injection into Cd1−xMnxTe than the standard gold contact. A technique for electroless deposition of NiP:Mn on Cd1−xMnxTe have been described here. The electronic and magnetic properties of the contact material NiP:Mn and the contact performance of NiP:Mn relative to evaporated gold have been evaluated. The contact fulfills the requirements of resistivity and ferromagnetism for application to Cd1−xMnxTe.  相似文献   

4.
The structural and optoelectronic properties of LixAxNbO3 (A=Na, K, Rb, Cs, Fr and x=0, 0.5) compounds have been investigated by the generalized gradient approximation within density functional theory. The calculated fundamental direct band gap of pure LiNbO3 is 3.32 eV. It is found that the substitution of alkali elements drastically change the optoelectronic nature of the compound from direct to indirect bandgap semiconductor and the fundamental gap also decreases. The nature of the compound is ionic with strong bonds between alkali ions and O, while there are partial covalent bonds between Nb and O. The calculated static refractive index of pure LiNbO3 is 2.43 for the perpendicular plane to the c-axis, while 2.37 for the parallel plane to the c-axis. So these values are intensively dependent on the substitution of alkali metals. The calculated electron energy loss spectra are in good agreement with the experimental results. It also predicts some extra interesting peaks, which have not been observed in experiments.  相似文献   

5.
The structural, superconducting and magnetic properties of La2Cu1−xZnxO4+δ (0≤x≤0.1) chemically oxidized by NaClO at room temperature were studied. All the samples before and after oxidation are single phase with orthorhombic structure, as indicated by their powder X-ray diffraction analysis. The iodometric titration results indicate that Zn-substituted La2Cu1−xZnxO4 is more favorable for the insertion of the excess oxygen, as compared to the Zn-free La2CuO4. The Tc suppression rate resulting from Zn substitution in La2Cu1−xZnxO4+δ is −12.4 K/%. The effective magnetic moment induced by the non-magnetic Zn ion is the order of one Bohr magneton, which decreases with increasing the Zn concentrations in the range examined. The latter two results are qualitatively well consistent with those obtained in La2−xSrxCu1−yZnyO4 with the Sr optimal doping. This reveals that the non-magnetic Zn ions play the same role in both of the La2Cu1−xZnxO4+δ with the excess oxygen content of about 0.1 and the La2−xSrxCu1−yZnyO4 with the Sr optimal doping.  相似文献   

6.
First principles density functional calculations, using full potential linearized augmented plane wave (FP-LAPW) method, have been performed in order to investigate the structural, electronic and optical properties of CaxZn1−xO alloy in B1 (NaCl) phase. Dependence of structural parameters as well as the band gap values on the composition x have been analyzed in the range 0?x?1. Calculated electronic structure and the density of states of these alloys are discussed in terms of the contribution of Zn d, O p and Ca p and d states. Furthermore, optical properties such as complex dielectric constants ε(ω), refractive index including extinction coefficient k(ω), normal-incidence reflectivity R(ω), absorption coefficient α(ω) and optical conductivity σ(ω) are calculated and discussed in the incident photon energy range 0-45 eV.  相似文献   

7.
In this work we report on the properties of ZnO and Zn1−xCdxO films formed on top of CdTe and CdZnTe single crystals. The films have been obtained by thermal evaporation of Zn metal films and further oxidation in atmospheric conditions. The structural and compositional characteristics of the films have been analysed by means of scanning electron microscopy and energy-dispersive X-ray analysis. The chemical composition of the films as a function of growth parameters has been obtained. It has been possible to demonstrate by Raman spectroscopy the formation of both ZnO and Zn1−xCdxO films. The possible inter-diffusion effects between the films and the substrate, derived from the oxidation process, have been discussed. It has been possible to check by means of photoluminescence, the optical quality of the ZnO and Zn1−xCdxO films, also regarding to the presence of local changes. Differences between the optical spectra obtained from various ZnO films grown on top of CdTe and CdZnTe substrates enabled the determination of compositional differences introduced by the substrate when the deposition parameters are modified.  相似文献   

8.
Complex permittivity, permeability and microwave absorbing properties of a U-type hexaferrite series Ba4Mn(2−x)ZnxFe36O60 (with 0≤x≤2 in step of 0.5) have been examined in the X-band (8.2-12.4 GHz) frequency range. The series have been prepared using conventional solid state reaction route. Microstructural variations with composition have been found with X-ray diffraction (XRD) and scanning electron microgram (SEM). The complex permittivity (ε?=ε′jε″) and permeability ?=μ−jμ″) were measured using vector network analyzer (Agilient Make model PNA E8364B). These parameters were then used for calculating the reflection loss for determination of microwave absorbing properties. Addition of Zn resulted in an increase in reflection loss from −4 dB (or 60 % absorption) in sample with x= 0 to −32 dB (99.92% absorption) in sample with x=1 when the sample thickness was 1.7 mm. Multiple peaks of resonance were obtained in the dielectric and magnetic loss spectra for all samples with x>0. The result indicates that the sample with composition Ba4MnZnFe36O60, i.e., x=1, can be used effectively for microwave absorption and suppression of electromagnetic interference.  相似文献   

9.
Static computer simulation techniques have been employed for structural investigation of the La1−xSrxVO3 series. Potential parameters for V3+-O2− and V4+-O2− have been derived which reproduces the crystal structures of end members with sufficient accuracy. Variations of lattice parameters and bond distances with Sr concentration have been studied. The calculated lattice parameters decrease with increase in the Sr concentration. A structural phase transition from orthorhombic to cubic is observed at 50% Sr doping level.  相似文献   

10.
An ab initio calculation based on density functional theory is applied to study the doping stability and electronic structure of wurtzite Zn1−xCdxO alloys. It is found that the different alloy configurations of Zn1−xCdxO with a given Cd content are possible thermodynamically, but having different band gaps. With increasing Cd content, the formation enthalpy of Zn1−xCdxO alloy increases sharply. The Cd-content dependence of the band-gap values can be fitted with a second-order polynomial. The reduction of band gap can be attributed to the contributions of the hybridization of Zn-4s and Cd-5s, the enhancement of p-d repulsion, and the tensile strain due to Cd-doping.  相似文献   

11.
Ab-initio calculations are performed to investigate the structural, electronic and magnetic properties of spin-polarized diluted magnetic semiconductors composed of II-VI compounds Cd1−xCoxX (X=S, Se, Te) at x=0.25. From the calculated results of band structure and density of states, the half-metallic character and stability of ferromagnetic state for Cd1−xCoxS, Cd1−xCoxSe and Cd1−xCoxTe alloys are determined. It is found that the tetrahedral crystal field gives rise to triple degeneracy t2g and double degeneracy eg. Furthermore, we predict the values of spin-exchange splitting energies Δx(d) and Δx(pd) and exchange constants N0α and N0β produced by the Co 3d states. Calculated total magnetic moments and the robustness of half-metallicity of Cd1−xCoxX (X=S, Se, Te) with respect to the variation in lattice parameters are also discussed. We also extend our calculations to x=0.50, 0.75 for S compounds in order to observe the change due to increase in Co.  相似文献   

12.
Luminescence characteristics of Ca1−xSrxS:Ce (x = 0, 0.25, 0.50, 1) nanophosphors have been investigated. XRD of all the samples show a single cubic phase of Ca1−xSrxS:Ce. TEM micrographs exhibit the rod like structure of the samples with a decrease in diameter with decreasing amount of Ca. The results of TEM were found to be in good agreement with the XRD results. The photoluminescence spectrum comprises of a main peak in the range 480-510 nm with a shoulder in the range 530-565 nm, which may be ascribed to transitions from 5d-4f levels of cerium in the mixed host lattice. The red shift in the emission wavelength with increasing Ca content may be correlated with the change in crystal field of mixed host lattice for different Ca and Sr concentrations. We have also investigated TL response of Ca1−xSrx:Ce to 60Co-γ rays. All the samples with different Sr and Ca contents show different TL response. TL response for the sample with x = 0.75 shows the simplest TL glow curve with the maximum TL intensity, for which we have calculated the activation energy using glow curve deconvolution functions.  相似文献   

13.
A series of CdxZn1−xS thin films have been deposited on glass substrates using spray pyrolysis technique. The crystallinity and microstructure of CdxZn1−xS thin films have been investigated by X-ray diffraction (XRD). Based on the results of Hall measurements, the films obtained were an n-type semiconductor. The X-ray data analysis of CdxZn1−xS thin films showed that the grain size of the CdxZn1−xS increased with increase in Cd composition. It is observed that the band gap increases as the Cd composition decreases. The results also showed a blue shift of absorption edge of optical transmission spectra is increases as Zn ratio increases. The effects of Cd composition on the structural and optical properties of CdxZn1−xS thin films were related to their grain size, stress and carrier concentration.  相似文献   

14.
We have investigated the magnetic phase diagram of polycrystalline and single-crystal La1−xSrxMnO3 near 0.46≤x≤0.50. It turns out that for x<0.48, the polycrystalline material is ferromagnetic (FM), but for x≥0.48, incipient charge ordering takes place along with antiferromagnetism. At x=0.48, the ferromagnetic-antiferromagnetic phase transition in ceramics occurs at less than 85 kOe but requires significantly larger field for increasing x. These observations are in contrast to what is found in the single crystals, which are all FM.  相似文献   

15.
Measurements of the reflection spectra of polycrystalline CdxSr1−xO alloys (0 ? x ? 0.9) at 85 and 300 K in the spectral range of lattice vibrations (200–600 cm−1) are reported. By Kramers-Kronig analysis the optical constants and the LO-mode frequencies were evaluated. The samples showed essentially one-mode behaviour with marked fine structure of the low-temperature absorption for intermediate values of x. Up to now, applying the cluster model of Verleur and Barker has not yielded a tentative explanation.  相似文献   

16.
The electronic, optical and structural properties of ZnxCd1−xSySe1−y quaternary alloys lattice matched to GaAs and InP are studied. The electronic band structure and density of states are computed using empirical pseudopotential method. The disorder effects are included via modified virtual crystal approximation. The bandgap computed from band structures are utilized to evaluate refractive indices, dielectric constants and ionicity factors for the alloys. Among structural properties elastic constants and bulk moduli are computed by combining the EPM with Harrison bond orbital model. All possible semiconductors from the ZnCdSSe system are found to have direct bandgap. The lattice matched alloys have larger band gap and more ionic character than the lattice matched compounds.  相似文献   

17.
This paper describes the nanoscratch behavior of Zn1−xCdxSe epilayers grown using molecular beam epitaxy (MBE). Transmission electron microscopy (TEM), scanning electron microscopy (SEM), and Hysitron Triboscope nanoindenter techniques were employed to determine the microstructures, morphologies, friction coefficients (μ), and hardnesses (H) of these materials, and thereby propose an explanation for their properties in terms of nanotribological behavior. Nanoscratch analysis revealed that the coefficient of friction of the Zn1−xCdxSe epilayer system decreased from 0.172 to 0.139 upon increasing the Cd content (x) from 0.07 to 0.34. Furthermore, studies of the scratch wear depth under a ramping load indicated that a higher Cd content provided the Zn1−xCdxSe epilayers with a higher shear resistance, which enhanced the strength of the CdSe bonds. These findings suggest that the greater stiffness of the CdSe bond, relative to that of the ZnSe bond, enhances the hardness of the epilayers. Indeed, the effect of the Cd content on the growth of the Zn1−xCdxSe epilayers is manifested in the resulting nanotribological behavior.  相似文献   

18.
The crystal structure, magnetism properties, and density of states for FeAs layered compound SrFe2As2 have been investigated by using the density functional theory (DFT) method. The magnetism under a checkerboard nearest neighbor anti-ferromagnetic (NN AFM) and ferromagnetic (FM) order ground-state have been analyzed with substitution for Sr with K ion in Sr1−xKxFe2As2. The results indicate that the distortion of FeAs tetrahedrons is sensitive to the electron doping concentration. The system magnetism was suppressed by K doping in NN-AFM ground state instead of FM. The density of states at Fermi level N(EF) under NN AFM ground state would be regarded as a driving force for the increased Tc of Sr1−xKxFe2As2 system as observed experimentally. Our calculation reflects that NN AFM type spin fluctuation may still exist in the Sr1−xKxFe2As2 system and it may be an origin of strong spin fluctuation in this system besides the spin density wave (SDW) states.  相似文献   

19.
A theoretical study on the structural, elastic, electronic and lattice dynamic properties of AlxYyB1−xyN quaternary alloys in zinc-blend phase has been carried out with first-principles methods. Information on the lattice parameter, the lattice matching to available substrates and energy band-gaps is a prerequisite for many practical applications. The dependence of the lattice parameter a, bulk modulus B, elastic constants C11, C12 and C44, band-gaps, optical phonon frequencies (ωTO and ωLO), the static and high-frequency dielectric coefficients ε (0) and ε () and the dynamic effective charge Z? were analyzed for y=0, 0.121, 0.241, 0.362 and 0.483. A significant deviation of the bulk modulus from linear concentration dependence was observed. A set of isotropic elastic parameters and related properties, namely bulk and shear moduli, Young's modulus, Poisson's ratio are numerically estimated in the frame work of the Voigt-Reuss-Hill approximation. The resistance to changes in bond length and lateral expansion in AlxYyB1−xyN increase with increasing y concentration. We observe that at y concentration about 0.035 and 0.063, AlxYyB1−xyN changes from brittle to ductile and Γ-X indirect fundamental gap becomes Γ-Γ direct fundamental gap. There is good agreement between our results and the available experimental data for the binary compound AlN, which is a support for those of the quaternary alloys that we report for the first time.  相似文献   

20.
The effect of Mn substitution for Cu in mixed-valence Mn doped La1.85−(4/3)xSr0.15+(4/3)xCu1−xMnxO4 (x=0.06) has been investigated by electric resistivity, magnetization and electron spin resonance experiments. Coexistence of superconductivity and ferromagnetism was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号