首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ESR spectrum of Mn2+ doped potassium hydrogen sulphate at liquid nitrogen temperature (77 K) has been analyzed and site of entered Mn2+ in the lattice has been discussed. The values of the zero field parameters that give good fit to the observed ESR spectra have been obtained. The obtained g, A, B, D, E and a values are 2.0002, 66×10−4 cm−1, 26×10−4 cm−1, 59×10−4 cm−1, 32×10−4 cm−1 and −8×10−4 cm−1, respectively. The percentage of covalency of the metal-ligand bond has also been estimated. From the optical absorption study at room temperature, the distortion has been suggested. The observed bands are assigned as transitions from the 6A1g(S) ground state to various excited quartet levels of Mn2+ ion in a cubic crystalline field. The electron repulsion and crystal field parameters B, C, Dq and α providing good fit to the observed optical spectra have been evaluated and the values obtained for the parameters are B=627 cm−1, C=2580 cm−1 , Dq=790 cm−1 and α=76 cm−1.  相似文献   

2.
Electron paramagnetic resonance (EPR), optical absorption, and luminescence spectral studies of Mn2+ ions doped in (30−x) (NaPO3)6+30PbO+40B2O3+xMnO2 (x=1.0, 2.0, 3.0, 4.0, and 5.0 mol%) glasses have been studied. The EPR spectra exhibit resonance signals with effective g value at geff≈2.02 with six line hyperfine structure. A weak resonance signal with effective g value at geff≈4.3 is also observed for higher concentrations of Mn2+ ions. The EPR spectra of x =3.0 mol% of Mn2+ in sodium-lead borophosphate glass sample have been studied at various temperatures. It is observed that the resonance signal intensity decreases with increase in temperature. The optical absorption spectrum exhibits bands characteristic of Mn2+ ions in octahedral symmetry. From the analysis of the bands, the crystal-field parameter Dq and the Racah interelectronic repulsion parameters B and C have been evaluated. The emission spectrum exhibits single broad band in the green region.  相似文献   

3.
EPR and optical studies of single crystals of Mn2+: bis(l-Asparaginato)Zn(II) are reported. The spin-Hamiltonian parameters are determined employing the positions of a large number of resonance lines for various orientations of the external magnetic field. The best-fit zero-field parameters to the observed EPR spectra are obtained as, D=(228±2)×10−4 cm−1, E=(58±2)×10−4 cm−1 and a=(−12±1)×10−4 cm−1,whereas g=2.0002±0.0002, , and . From the optical absorption study, the lattice distortion is suggested. The electron repulsion parameters (B and C) and crystal field parameters (Dq and α) evaluated from the fitting of observed optical spectra are: B=858 cm−1, C=2620 cm−1, Dq=950 cm−1, and α=76 cm−1.  相似文献   

4.
Electron paramagnetic resonance (EPR), optical absorption and emission spectra of Cr3+ ions doped in (30−x) (NaPO3)6+30PbO+40B2O3+xCr2O3 (x=0.5, 2.0, 3.0, 4.0 and 5.0 mol%) glasses have been studied. The EPR spectra exhibit resonance signals with effective g values at g≈4.55 and g≈1.97. The EPR spectra of x=3.0 mol% of Cr2O3 in sodium-lead borophosphate glass sample were studied at various temperatures (295-123 K). The intensity of the resonance signals increases with decrease in temperature. The optical absorption spectrum exhibits four bands characteristic of Cr3+ ions in octahedral symmetry. From the analysis of the bands, the crystal-field parameter Dq and the Racah interelectronic repulsion parameters B and C have been evaluated. The emission spectrum exhibit one broad band characteristic of Cr3+ ions in octahedral symmetry. This band has been assigned to the transition 4T2g (F)→4A2g (F). Correlating EPR and optical data, the molecular bonding coefficient (α) has been evaluated.  相似文献   

5.
The LaAl11O18:Mn2+ powder phosphor has been prepared using a self-propagating synthesis. Formation and homogeneity of the LaAl11O18:Mn2+ phosphor has been verified by X-ray diffraction and energy dispersive X-ray analysis respectively. The EPR spectra of Mn2+ ions exhibit resonance signals with effective g values at g≈4.8 and g≈1.978. The signal at g≈1.978 exhibits six-line hyperfine structure and is due to Mn2+ ions in an environment close to tetrahedral symmetry, whereas the resonance at g≈4.8 is attributed to the rhombic surroundings of the Mn2+ ions. It is observed that the number of spins participating in resonance for g≈1.978 increases with decreasing temperature obeying the Boltzmann law. Upon 451 nm excitation, the photoluminescence spectrum exhibits a green emission peak at 514 nm due to 4T1 (G)→6A1 (S) transition of Mn2+ ions. The crystal field parameter Dq and Racah inter-electronic repulsion parameters B and C have been evaluated from the excitation spectrum.  相似文献   

6.
The excitation spectrum of the Mn2+ emission has been measured in CaF2 and CdF2. The observed excitation bands have been assigned to transitions of the Mn2+ ions in a cubic environment. The calculated values for the crystal field (Dq) and Racah parameters (B,C) are Dq = 425 cm-1 for CaF2, Dq = 500 cm-1 for CdF2 and, B = 770 cm-1 and C / B = 4.48 for both compounds. The lifetime of the fluorescent level 4T1g(4G) has been measured in both compounds at different temperatures in the range from 10 to 500 K. The lifetime thermal dependence is explained taking into account different mechanisms (purely radiative, phonon assisted, and radiationless transitions) for the decay of excited Mn2+ ions.  相似文献   

7.
Electron paramagnetic resonance (EPR) and optical absorption spectral investigations have been carried out on Fe3+ ions doped sodium borophosphate glasses (NaH2PO4-B2O3-Fe2O3). The EPR spectra exhibit resonance signals with effective g values at g=2.02, g=4.2 and g=6.4. The resonance signal at g=4.2 is due to isolated Fe3+ ions in site with rhombic symmetry whereas the g=2.02 resonance is due to Fe3+ ions coupled by exchange interaction in a distorted octahedral environment. The EPR spectra at different temperatures (123-295 K) have also been studied. The intensity of the resonance signals decreases with increase in temperature whereas linewidth is found to be independent of temperature. The paramagnetic susceptibility (χ) was calculated from the EPR data at various temperatures and the Curie constant (C) and paramagnetic Curie temperature (θp) have been evaluated from the 1/χ versus T graph. The optical absorption spectrum exhibits bands characteristic of Fe3+ ions in octahedral symmetry. The crystal field parameter (Dq) and the Racah interelectronic repulsion parameters (B and C) have also been evaluated and discussed.  相似文献   

8.
EPR spectra of Cr3+ ions doped in potassium sodium dl-tartrate tetrahydrate single crystals are recorded at 77 K. The spin Hamiltonian and zero field parameters g, |D| and |E| are measured from the resonance lines obtained at various rotations of the magnetic field. The values obtained are: gx=1.9257±0.0002, gy=1.9720±0.0002, gz=2.0102±0.0002, |D|=313±2 (×10−4) cm−1 and |E|=101±2 (×10−4) cm−1. From the results of EPR study, the site symmetry of Cr3+ ion in the crystal is discussed. The optical absorption at room temperature is also studied. From the observed band positions, the crystal field splitting parameter (Dq) and the Racah inter-electronic repulsion parameters (B and C) are evaluated. The bonding parameters are obtained by correlating optical and EPR data and the nature of bonding in the crystal is discussed.  相似文献   

9.
The electron paramagnetic resonance (EPR) study of the Cr3+-doped ammonium oxalate monohydrate (AOM) single crystal is done at room temperature. Two magnetically inequivalent sites for chromium are observed. The hyperfine structure for Cr53 isotope is also obtained. The spin Hamiltonian parameters are evaluated as: D=(309±2)×10−4 cm−1, E=(103±2)×10−4 cm−1, g=1.9820±0.0002, A=(161±2)×10−4 cm−1 for site I and D=(309±2)×10−4 cm−1, E=(103±2)×10−4 cm−1, g=1.9791±0.0002, A=(160±2)×10−4 cm−1 for site II, respectively. On the basis of EPR data the site symmetry of Cr3+ doped single crystal is discussed. The optical absorption spectra are recorded in 195-925 nm wavelength range at room temperature. The energy values of different orbital levels are determined. On the basis of EPR and optical data, the nature of bonding in the crystal is discussed. The values of different parameters are B=803, C=3531, Dq=2208 cm−1, h=0.59 and k=0.21, where B and C are Racah parameters, Dq is crystal field parameter and h and k are nephelauxetic parameters, respectively.  相似文献   

10.
Room temperature electron paramagnetic resonance (EPR) spectra and temperature dependent magnetic susceptibility data have been obtained on bulk x(ZnO,Fe2O3)(65−x)SiO220(CaO, P2O5)15Na2O (6≤x≤21 mole%) glasses prepared by melt quenching method. EPR spectra of the glasses revealed absorptions centered at g≈2.1 and 4.3. The variations of the intensity and line width of these absorption lines with composition have been interpreted in terms of the variation in the concentration of the Fe2+ and Fe3+ ions in the glass and the interaction between the iron ions. EPR and magnetic susceptibility data of the glasses reveal that both Fe2+ and Fe3+ ions are present in the glasses, with their relative concentration being dependent on the glass composition. The studies reveal superexchange type interactions in these glasses, which are strongly dependent on their iron content.  相似文献   

11.
The absorption spectrum of Mn2+ doped in diglycine barium chloride monohydrate has been studied at room temperature. The observed bands are assigned as transitions from the 6A1g(S) ground state to various excited quartet levels of a Mn2+ ion in a cubic crystalline field. A new method has been suggested to evaluate the Racah parameters (B and C) accurately. The observed band positions are fitted with four parameters B, C, Dq and α, and the values obtained for the parameters are B= 810 cm-1, C = 2990 cm-1, Dq = 750 cm-1 and α = 76 cm-1.  相似文献   

12.
EPR study of the Cr3+ ion doped l-histidine hydrochloride monohydrate single crystal is done at room temperature. Two magnetically inequivalent interstitial sites are observed. The hyperfine structure for Cr53 isotope is also obtained. The zero field and spin Hamiltonian parameters are evaluated from the resonance lines obtained at different angular rotations and the parameters are: D=(300±2)×10−4 cm−1, E=(96±2)×10−4 cm−1, gx=1.9108±0.0002, gy=1.9791±0.0002, gz=2.0389±0.0002, Ax=(252±2)×10−4 cm−1, Ay=(254±2)×10−4 cm−1, Az=(304±2)×10−4 cm−1 for site I and D=(300±2)×10−4 cm−1, E=(96±2)×10−4 cm−1, gx=1.8543±0.0002, gy=1.9897±0.0002, gz=2.0793±0.0002, Ax=(251±2)×10−4 cm−1, Ay=(257±2)×10−4 cm−1, Az=(309±2)×10−4 cm−1 for site II, respectively. The optical absorption studies of single crystals are also carried out at room temperature in the wavelength range 195-925 nm. Using EPR and optical data, different bonding parameters are calculated and the nature of bonding in the crystal is discussed. The values of Racah parameters (B and C), crystal field parameter (Dq) and nephelauxetic parameters (h and k) are: B=636, C=3123, Dq=2039 cm−1, h=1.46 and k=0.21, respectively.  相似文献   

13.
By analyzing the EPR spectrum of transition-metal ion Fe3+ in Al2O3:Fe3+ system, the local lattice structure around impurity Fe3+ ion in the crystal has been studied by means of the diagonalization of the energy matrices of the electron-electron repulsion, the ligand-field and the spin-orbit coupling for a d5 configuration ion in a trigonal ligand-field. Both the second-order and fourth-order EPR parameters D and (aF) are taken simultaneously in the structural investigation. The results indicate that the two three-edge-pyramids elongated obviously along C3 axis. The two distortion angles Δθ1=−1.1±0.1°,Δθ2=−1.8° as well as the two Fe-O bond lengths R1=2.016 A, R2=1.907 A are determined, respectively.  相似文献   

14.
15.
Co2+ and Ni2+ ions doped β-BaB2O4 nanopowders have been prepared by co-precipitation method and their structural properties are studied by spectroscopic techniques. Powder XRD data reveals that the crystal structure belongs to monoclinic and the average crystallite size is calculated. Optical absorption spectra data reveal octahedral site symmetry for Co2+ and Ni2+ ions. Crystal field (Dq) and inter-electron repulsion (B and C) parameters are evaluated for Co2+ doped β-BaB2O4 nanopowders as Dq=960, B=900 and C=3850 cm?1 and for Ni2+ doped β-BaB2O4 nanopowders, Dq=900, B=850 and C=3500 cm?1. FT-IR spectra showed the characteristic vibrational bands related to BO3 and BO4 molecules. Photoluminescence spectra contain the emission bands in ultraviolet and blue regions.  相似文献   

16.
Attempts were made to grow CeO2 and ThO2 single crystals doped with transition metal ions. Only Fe3+ and Mn2+ could be detected by the EPR technique. The EPR spectrum of Fe3+ in CeO2 exhibits the well-known fine structure in cubic fields. The parameters areg=2.0044(1) anda=15.6(1)·10?4 cm?1. The hyperfine constantA for57Fe in hexahedral coordination was found to be 8.9(1)·10?4 cm?1. The EPR spectrum of Mn2+ in CeO2 reveals two cubic Mn2+ centers. The parameters for center 1 areg=1.9999(1) andA=86.9(1)·10?4 cm?1 and for center 2g=1.9984(1) andA=87.0(1)·10?4 cm?1. Heating the Mn doped CeO2 samples in hydrogen, the Mn2+ centers transform from cubic into trigonal centers with approximate values ofg=1.9988(2),A=84.5(6)·10?4 cm?1 andD=203(1)·10?4 cm?1. The two observed Mn2+ centers in ThO2 exhibita priori axial symmetry with approximate values ofg=2.0006(2),A=88.9(4)·10?4 cm?1 andD=33(3)·10?4 cm?1.  相似文献   

17.
The EPR zero-field splitting parameters D and g-factors for Cr3+ in α-LiIO3 single crystal, taking into account both the effect of lattice distortion and two Li+ vacancies, have been investigated using a complete diagonalization method (CDM) for 3d3 ions in a trigonal symmetry crystal field. The theoretical results (D=−0.60876 cm−1, g=1.9641, g=1.9682) are in excellent agreement with experimental results (D=−0.6099(3) cm−1g=1.965±0.001, g=1.971±0.002). In addition, Macfarlane's perturbation expressions lead to results almost identical with the CDM for Cr3+ in an α-LiIO3 single crystal.  相似文献   

18.
Polycrystalline thin films of Fe3−xZnxO4 (x = 0.0, 0.01 and 0.02) were prepared by pulsed-laser deposition technique on Si (1 1 1) substrate. X-ray diffraction studies of parent as well as Zn doped magnetite show the spinel cubic structure of film with (1 1 1) orientation. The order–disorder transition temperature for Fe3O4 thin film with thickness of 150 nm are at 123 K (Si). Zn doping leads to enhancement of resistivity by Zn2+ substitution originates from a decrease of the carrier concentration, which do not show the Verwey transition. The Raman spectra for parent Fe3O4 on Si (1 1 1) substrate shows all Raman active modes for thin films at energies of T2g1, T2g3, T2g2, and A1g at 193, 304, 531 and 668 cm−1. It is noticed that the frequency positions of the strongest A1g mode are at 668.3 cm−1, for all parent Fe3O4 thin film shifted at lower wave number as 663.7 for Fe2.98Zn0.02O4 thin film on Si (1 1 1) substrate. The integral intensity at 668 cm−1 increased significantly with decreasing doping concentration and highest for the parent sample, which is due to residual stress stored in the surface.  相似文献   

19.
The effect of Li2O content in vanadyl doped 20ZnO+xLi2O+(30−x)Na2O+50B2O3 (5≤x≥25) glasses has been studied with respect to their physical and structural properties. The absence of sharp peaks in XRD spectra of these glass samples confirms the amorphous nature. The physical parameters like density, refractive index, ionic concentration and electronic polarizability vary non-linearly with x mol% depending on the diffusivities of alkali ions. EPR and optical absorption spectra reveal that the resonance signals are characteristics of VO2+ ions in tetragonally compressed octahedral site. Spin-Hamiltonian, crystal field, tetragonal field and bonding parameters are found to be in good agreement with the other reported glass systems. The tetragonal distortion (g-g) and Dt reveals that their values vary non-linearly with Li2O content and reaches a minimum at x=10 mol%. An anomaly of character has been observed in all the properties of vanadyl doped glass systems, which gives a clear indication of mixed alkali effect.  相似文献   

20.
The optical absorption and ESR spectra of Bi12GeO20 and B12SiO20 doped with Mn have been measured before and after illumination with visible light. Uniaxial stress measurements on a sharp line observed at 8026 cm?1 were performed. The observed ESR spectrum is a superposition of six lines resulting from the hyperfine interaction of manganese ions in tetrahedral positions. The g-factor and hyperfine constant are g = 1.999 ± 0.003 and A = 78 Gs. Analysis of the light-induced absorption spectrum leads to the conclusion that a small hole polaron bound to an Mn impurity at a tetrahedral site is responsible for the very broad absorption band which appears after illumination. The sharp line is interpreted as due to a transition inside the Mn+ center in tetrahedral coordination. Bands in the region 10,000–16,000 cm?1 are due to Mn3+ centers in interstitial positions, whose symmetry can be treated to a first approximation as tetragonal. The following crystal field parameters for this center were found: B = 565 cm?1, Dq = 1400 cm?1, Dt = ?330 cm?1, Ds = 4170 cm?1 and C = 2260 cm?1. The illumination conditions which are needed for homogeneous coloration of the sample are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号