首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Structural, electronic, elastic and mechanical properties of Cd and Hg based rare earth intermetallics (RECd and REHg; RE=Sc, La and Yb) have been investigated using the full-potential linearized augmented plane-wave (FP-LAPW) method within the density-functional theory (DFT). The ground state properties such as lattice constant (a0), bulk modulus (B) and its pressure derivative (B′) have been obtained using optimization method and are found in good agreement with the available experimental results. The calculated enthalpy of formation shows that LaHg has the strongest alloying ability and structural stability. The electronic band structures and density of states reveal the metallic character of these compounds. The structural stability mechanism is also explained through the electronic structures of these compounds. The chemical bonding between rare earth atoms and Cd, Hg is interpreted by the charge density plots along (1 1 0) direction. The elastic constants are predicted from which all the related mechanical properties like Poisson’s ratio (σ), Young’s modulus (E), shear modulus (GH) and anisotropy factor (A) are calculated. The ductility/brittleness of these intermetallics is predicted. Chen’s method has been used to predict the Vicker’s hardness of RECd and REHg compounds. The pressure variation of the elastic constants is also reported in their B2 phase.  相似文献   

2.
The structural, electronic, elastic, mechanical and thermal properties of Ti3Au, Ti3Pt and Ti3Ir intermetallic compounds crystallizing in A15 structure have been studied using density functional theory within generalized gradient approximation (GGA) for the exchange correlation potential. Elastic properties such as Young's modulus (E), rigidity modulus (G), bulk modulus (B), Poisson's ratio (σ) and elastic anisotropic factor (A) have been calculated. From the present study it is noted that Ti3Ir is the hardest compound among the three materials studied due to its larger bulk modulus. Also, it is more ductile in nature.  相似文献   

3.
The high pressure structural, elastic and thermal properties of holmium pnictides HoX (X=N, P, As and Bi) were investigated theoretically by using an inter-ionic potential theory with modified ionic charge parameter. We have predicted a structural phase transition from NaCl (B1) to CsCl (B2)-type structure at pressure of 139 GPa for HoN, 52 GPa for HoP, 44 GPa for HoAs and 26 GPa for HoBi. Other properties, such as lattice constant, bulk modulus, cohesive energy, second and third-order elastic constants were calculated and compared with the available experimental and theoretical data. In order to gain further information the brittle behaviour of these compounds was observed. Some other properties like Shear modulus (G), Young's modulus (E), Poisson's ratio (ν), anisotropy factor (A), sound velocities, Debye temperature (θD) were calculated. The variation of elastic constants (C11 and C44) and Debye temperature (θD) with pressure was also presented.  相似文献   

4.
First-principles calculations were performed to study the elastic stiffness constants (C ij ) and Debye temperature (?? D) of wurzite (wz) AlN and GaN binary semiconductors at high pressure. The lattice constants were calculated from the optimized structure of these materials. The band gaps were calculated at Γ point using local density approximation (LDA) approach. The unit cell volume, lattice parameters, c/a, internal parameter (u), elastic constant (C ij ), Debye temperature (?? D), Hubbard parameter (U) and band gap (E g) were studied under different pressures. The bulk modulus (B 0), reduced bulk modulus ( \(B_{0}^{\prime })\) and Poisson ratio (υ) were also calculated. The calculated values of these parameters are in fair agreement with the available experimental and reported values.  相似文献   

5.
Spin polarized ab initio calculations have been carried out to study the structural, electronic, elastic and thermal properties of RHg (R = Ce, Pr, Eu and Gd) intermetallic compounds in B2 structure. The calculations have been performed by using both generalized gradient approximation (GGA) and local spin density approximation (LSDA). The calculated value of lattice constant (a 0) for these compounds with GGA is in better agreement with the experimental data than those with LSDA. Bulk modulus (B), first-order pressure derivative of bulk modulus and magnetic moment (μ B ) are also presented. The energy band structure and electron density of states show the occupancy of 4f states for light as well as heavy rare earth atom. The elastic constants are predicted from which all the related mechanical properties like Poisson’s ratio (σ), Young’s modulus (E), shear modulus (G H ) and anisotropy factor (A) are calculated. The ductility or brittleness of these compounds is predicted from Pugh’s rule (B/G H ) and Cauchy pressure (C 12 ? C 44). The Debye temperature (θ D ) is estimated from the average sound velocity, which have not been calculated and measured yet.  相似文献   

6.
The structural, electronic, elastic, vibrational and thermodynamic properties of the Ru2YGa (Y = Sc, Ti and V) Heusler alloys in L21 type cubic structure have been analyzed systematically using first principles density functional theory (DFT) together with the Generalized Gradient Approximation (GGA) method. The values of calculated lattice constant (a0), elastic constants (Cij), Bulk modulus (B), Shear modulus (G), ratios of B/G, Young's modulus (E) and Poisson ratio (ν) are in good agreement with the available theoretical and experimental results. The electronic band structures, corresponding total and partial density of states have also been obtained. The calculated band structures demonstrate that Ru2YGa (Y = Sc, Ti and V) alloys are metallic. The phonon dispersion curves, total and partial density of states of these alloys have been computed for the first time by adopting the direct method. It is considered that all alloys are dynamically stable in L21 structure.  相似文献   

7.
We propose a new layered-ternary Ta4SiC3 with two different stacking sequences (α- and β-phases) of the metal atoms along c axis and study their structural stability. The mechanical, electronic and optical properties are then calculated and compared with those of other compounds M4AX3 (M=V, Nb, Ta; A=Al, Si and X=C). The predicted compound in the α-phase is found to possess higher bulk modulus than these compounds. The independent elastic constants of the two phases are also evaluated and the results discussed. The electronic band structures for α- and β-Ta4SiC3 show metallic conductivity. Ta 5d electrons are mainly contributing to the total density of states (DOS). We see that the hybridization peak of Ta 5d and C 2p lies lower in energy and the Ta 5d-C 2p bond is stronger than Ta 5d-Si 3p bond. Further an analysis of the different optical properties shows the compound to possess improved behavior compared to similar types of compounds.  相似文献   

8.
A detailed theoretical study of structural, electronic, and elastic properties of cubic UAlx (x=1,2,3) is presented employing the pseudopotential plane-wave method based on density-functional theory. The structure parameters of these three compounds have been calculated within generalized gradient approximation (GGA) and local density approximation (LDA). The calculated results were compared with the experimental data and previous research. With the GGA approximation, the elastic constants, shear modulus, Young's modulus, and Poisson's ratio of UAlx (x=1,2,3) are derived. According to the generalized mechanical stability criteria for cubic crystals, our calculation suggested that C15 UAl2 and L12 UAl3 are stable substance under hydrostatic pressures, but B2 UAl might be expected as a metastable compound, which is not reported in previous literature, and future experimental confirmation is needed. Furthermore, the calculated energy band structure and density of state (DOS) are found to be in good agreement with the theoretical values. Additionally, the charge density of these compounds have also been worked out and analyzed.  相似文献   

9.
The lattice constants, elastic properties, electronic structure and thermodynamic properties of Al3Nb with DO22 structure have been investigated by the first-principles calculation. The calculated lattice constants were consistent with the experimental values, and the structural stability was also studied from the energetic point of view. The single-crystal elastic constants (Cij) as well as polycrystalline elastic parameters (bulk modulus B, shear modulus G, Young's modulus E, Poisson's ratio υ and anisotropy value A) were calculated, and brittleness of Al3Nb was discussed in detail. Besides, the electronic structure of tetragonal Al3Nb was studied, which indicates a mixture of metallic bond and covalent bond in Al3Nb and reveals the underlying mechanism of the stability and elastic properties of Al3Nb. Finally, the thermodynamic properties of Al3Nb were calculated and the physical properties such as heat capacity and Debye temperature were predicted within the quasi-harmonic approximation.  相似文献   

10.
Among the class of ABO3-type perovskite oxides, LaMO3 (M=Ga and In) compounds are investigated in cubic (Pm-3m), tetragonal (P4mm), hexagonal (P-3m1), rhombohedral (R-3c) and orthorhombic (Pbnm) phases using generalised gradient approximation (GGA) within the density functional theory. On-site Coulomb interaction is also included in the calculations (GGA + U). After the determination of the stable phase, phase transition pressures have also been calculated. Then, their full structural, mechanical, electronic, optical and vibrational properties have been studied in stable orthorhombic (Pbnm) phase. Both compounds are non-magnetic insulators in their ground states. The energy gaps (Eg) of LaGaO3 and LaInO3 compounds have been found as 3.14 and 2.55 eV, respectively. The calculated elastic constants and phonon dispersion curves confirm the stability of orthorhombic phase mechanically and dynamically.  相似文献   

11.
First-principles calculations have been used to study the structural and electronic properties of technologically important matlockite compounds MFX (MBa, Sr, Pb; XCl, Br, I) using a full potential linearized augmented plane-wave method within density functional theory. We used the local density approximation and the generalized gradient approximation, as well as the Engel-Vosko's GGA formalism to find the band gap and the partial density of states at equilibrium volume. We also optimized internal parameters by relaxing the atomic positions in the force directions. The calculated total energy allowed us to investigate several structural properties in particular the equilibrium lattice constants a and c, c/a ratio, bulk modulus, pressure derivative of the bulk modulus, cohesive energy, interatomic distances, interlayer distances along c axis and the angles between different atomic bonds. We calculated the valence charge density at the equilibrium volume for BaFCl and PbFCl and concluded that the bonding nature in these compounds is mainly ionic. Results are discussed and compared with experimental and other theoretical data.  相似文献   

12.
Ab initio calculations of structural, electronic, elastic, and phonon properties of TiRu3 and TiOs3 compounds have been studied using the density functional theory (DFT) within the generalized gradient approximation (GGA). The basic structural properties such as lattice constants, bulk modulus and pressure derivative of bulk modulus of these compounds were studied and compared with the previous theoretical data. Electronic band structures and partial densities of states for TiRu3 and TiOs3 compounds were computed and analyzed. The electronic band calculations showed that the TiRu3 and TiOs3 compounds have metallic nature. Phonon spectra, their total and projected densities of states for these compounds were computed by using a linear-response method in the framework of the density functional perturbation theory. The specific heat capacities at a constant volume CV and Debye temperature of TiCr3 and TiOs3 compounds were also calculated and discussed.  相似文献   

13.
The band structure, density of states, charge densities, and elasticity-relevant properties of BaAlBO3F2 are obtained by first-principles density functional calculations within the generalized gradient approximation. Other elasticity-relevant constants, such as the the Young's modulus, Poisson ratio, velocity of acoustic waves, and the Debye temperature are also deduced from the elastic constants. Bonding analysis demonstrates that BaAlBO3F2 has different bonding properties between basal (ab) plane and c axis. The analyses on elasticity-relevant properties indicate BaAlBO3F2 is mechanically stable and anisotropic. It is also shown that BABF is an ionic crystal with brittle character. Our these results give a reasonable explanation for the experimental finding that BaAlBO3F2 is apt to crack along c axis. Proceeding from Christoffel equation, we discuss the propagation properties of acoustic modes in BaAlBO3F2 to give a theoretical guidance for measuring its elastic constants. Research shows that the calculated average velocities of longitudinal and transverse modes from Christoffel equation are in good agreement with those from classic Debye model.  相似文献   

14.
A theoretical study of structural, electronic, elastic, thermal and mechanical properties of nonmagnetic intermetallics YM (M=Cu, Zn and Ag), which crystallize in CsCl-type structure, is performed using first principles density functional theory based on full potential linearized augmented plane wave (FP-LAPW) method. The calculations are carried out within the generalized gradient approximation (GGA) for the exchange correlation potential. The calculated ground state properties such as lattice constants, bulk modulus and elastic constants agree well with the experiment. From energy dispersion curves, it is found that these compounds are metallic in nature. The ductility of these intermetallics is determined by calculating the bulk to shear ratio B/GH. The calculated results indicate that YAg is the most ductile amongst the present YM compounds. The results obtained are compared with the available experimental and theoretical results. The mechanical and thermal properties are predicted from the calculated values of elastic constants.  相似文献   

15.
The structural and mechanical properties of LnO (Ln=Sm, Eu, Yb) compounds have been investigated using a modified interionic potential theory, which includes the effect of Coulomb screening. We predicted a structural phase transition from NaCl (B1)- to CsCl (B2)-type structure and elastic properties in LnO compounds at very high pressure. The anomalous properties of these compounds have been correlated in terms of the hybridisation of f-electrons of the rare earth ion with conduction band and strong mixing of f-states of lanthanides with the p-orbital of neighbouring chalcogen ion. For EuO, the calculated transition pressure, bulk modulus and lattice parameter are close to the experimental data. The nature of bonds between the ions is predicted by simulating the ion-ion (Ln-Ln and Ln-O) distances at high pressure. The second order elastic constants along with shear modulus and Young's modulus, elastic anisotropy and Poisson's ratio are also presented for these oxides.  相似文献   

16.
We present the results of our calculations on Boron antimony (BSb) compound in zinc-blende (ZB) and rock-salt (RS) structures by performing ab initio calculations within the local density approximation (LDA). Some basic physical properties, such as lattice constant, bulk modulus, cohesive energy, phase transition pressure, second-order elastic constants (Cij), phonon frequencies, and some band structural parameters are calculated and compared with those obtained with other recent theoretical works. In order to further understand the behaviour of BSb compound, we have also predicted, the pressure-dependent behaviours of the band gap, second-order elastic constants (Cij), Young's modulus, poison ratios (ν), Anizotropy factor (A), sound velocities, and Debye temperature for this hypothetical compound.  相似文献   

17.
The elastic, electronic, and optical properties of MNNi3 (M=Zn, Sn, and Cu) have been calculated using the plane-wave ultrasoft pseudopotential technique, which is based on the first-principle density functional theory (DFT) with generalized gradient approximation (GGA). The optimized lattice parameters, independent elastic constants (C11, C12, and C44), bulk modulus B, compressibility K, shear modulus G, and Poisson's ratio υ, as well as the band structures, total and atom projected densities of states and finally the optical properties of MNNi3 have been evaluated and discussed. The electronic band structures of the two hypothetical compounds show metallic behavior just like the superconducting ZnNNi3. Using band structures, the origin of features that appear in different optical properties of all the three compounds has been discussed. The large reflectivity of the predicted compounds in the low energy region might be useful in good candidate materials for coating to avoid solar heating.  相似文献   

18.
Structural, electronic and thermodynamic properties of SrTe and BaTe compounds and their ternary mixed crystals BaxSr1−xTe in the rock-salt structure have been studied with density functional theory (DFT), whereas the optical properties have been obtained by using empirical methods such as the modified Moss relation. The exchange-correlation potential was calculated using the generalized gradient approximation (GGA) of Perdew–Burke–Ernzerhof (PBE) and the local density approximation (LDA) of Teter–Pade (TP). In the present work, we used the virtual-crystal approximation (VCA) to study the effect of composition (x). The calculated lattice parameters at equilibrium volume and the bulk modulus for x=0 and x=1 are in good agreement with the literature data. Furthermore, the BaxSr1−xTe alloys are found to be an indirect band gap semiconductor. In addition, we have also predicted the heat capacities (CV), the entropy(S), the internal energy (U) and the Helmholtz free energy (F) of the parent compounds SrTe and BaTe.  相似文献   

19.
We have investigated the elastic and thermodynamic properties for the perovskite type metavanadate SrVO3 and the multiferroic PbVO3, probably for the first time by the means of a Modified Rigid Ion Model (MRIM). We present the elastic constants (C11,C12,C44) and other elastic properties like Bulk modulus (B), Young′s modulus (E), shear modulus (G), Poisson′s ratio (σ) and wave velocity (υl, υs, υm). Besides we have reported the thermodynamic properties molecular force constant (f), Reststrahlen frequency (ν), cohesive energy (?), Debye temperature (θD) and Gruneisen parameter (γ). We have also computed the variation of heat capacity (CP) and there by volume thermal expansion coefficient (α) in a wide temperature range. We found that the computed properties reproduce well with the available data in literature. To our knowledge some of the properties are reported for the first time.  相似文献   

20.
《Current Applied Physics》2018,18(3):280-288
The structural, elastic, thermodynamic and electronic properties of the Ti15−xMoxSn compounds were systematically investigated by means of first-principles calculations based on the density functional theory (DFT). The calculated results demonstrate the Ti15−xMoxSn compounds still remain the stable β phase structure. The calculation of cohesive energy shows that the structural stability of the Ti15−xMoxSn compounds increases apparently with the increase of Mo content. According to Hooke's law, the single crystal elastic constants were obtained and show that all the calculated compounds keep mechanical stability. Then the bulk modulus B, shear modulus G, Young's modulus E and Poisson's ratio ν of polycrystalline aggregates were calculated at zero pressure. The calculated results show that among these Ti15−xMoxSn compounds, Ti4Mo11Sn exhibits the largest stiffness while Ti12Mo3Sn shows the greatest ductility. The compounds Ti12Mo3Sn and Ti11Mo4Sn with the two lowest elastic Young's modulus of 61.01 GPa and 65.59 GPa are expected to be promising metallic biomaterials for implant applications. Besides, the Debye temperature ΘD and the electronic density of states (DOS) are also investigated and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号