首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four new compounds, [Mn(HL)(phen)2(H2O)] (1), [Ni(HL)(phen)2(H2O)] (2), [Zn(HL)(4,4′-bipy)1.5(H2O)] n ?·?2nH2O (3) and [Zn2(HL)2(H2O)6] (4), have been synthesized from an asymmetric semi-rigid V-shaped multicarboxylate 4-(4-carboxy-phenoxy)-phthalic acid (H3L) with 1,10-phenanthroline (phen), or 4,4′-bipyridine (4,4′-bipy) as auxiliary ligands. Single-crystal X-ray diffraction analysis reveals that 1, 2 and 4 have 0-D structures with 3-D supramolecular frameworks formed by intermolecular hydrogen bonds. Compound 3 shows a 1-D infinite ribbon bridged by 4,4′-bipy, which further forms a 3-D supramolecular architecture by π–π stacking interactions and hydrogen bonds. Thermal stabilities of 14 and luminescence properties of 3 and 4 have also been investigated.  相似文献   

2.
Two Zn(II) complexes, [Zn(Fura)2(2,2′-bpy)(H2O)] (1) and [Zn(µ-dnbc)2] (2), have been synthesized and characterized by X-ray diffraction and IR spectra. 1 is a quaternary Zn(II) complex with ZnN2O3 configuration distorted square pyramid geometry; 2 is a Zn(II) coordination polymer with 1D double-helical chains bridged by 3,5-dinitrobenzoic acid.  相似文献   

3.
A 1-D copper(II) coordination polymer and two mononuclear copper(II) complexes of 4-formylbenzoate, [Cu(L)2(H2O)2] n (1), [Cu(L)2(D,L-cam)] (2), and [Cu(L)(bpy)2]?·?(ClO4)(H2O) (3) (HL?=?4-formylbenzoic acid, D,L-cam?=?D,L-camphoric diamine, bpy?=?2,2′-bipyridine), have been obtained from cleavage of C=N double bonds of a bis-Schiff-base compound. 4-Formylbenzoate exhibits bidentate chelating and bidentate μ 2-bridging modes by terminal carboxylic and aldehydic groups in 1-D coordination polymer 1. In contrast, it shows bidentate chelating in 2 and monodentate and bidentate bonding in 3 by its terminal carboxylic group where the aldehydic group does not coordinate. Offset π–π stacking interactions and two types of 8-membered hydrogen-bonding rings are found between neighboring molecules of the copper(II) complexes.  相似文献   

4.
Three new copper(II) complexes with isonicotinic acid N-oxide (HL) and 1,10-phenanthroline (phen) as ligands, [Cu(L)(phen)(H2O)]2(NO3)2···2H2O (1), [Cu(L)(phen)(H2O)]2(ClO4)2···2H2O (2), and [Cu(L)(phen)Br]2- [Cu(L)(phen)(H2O)]2Br2···6H2O (3) have been synthesized and structurally characterized. The structures of all three complexes feature a Cu2 dimer formed by two Cu(II) ions interconnected by two bridging ligands. Each copper(II) ion has a distorted square pyramidal coordination geometry with elongated axial coordination by an aqua ligand or halogen anion. The isonicotinic acid N-oxide anion is bidentate, being coordinated to two Cu(II) ions through its N-O oxygen and one of its carboxylate oxygen atoms. Magnetic susceptibility measurements show a Curie–Weiss paramagnetic behavior characteristic of one unpaired electron for a copper(II) ion for all three complexes.  相似文献   

5.
Reactions of fresh M(OH)2 (M = Zn2+, Cd2+) precipitate and (RS)-2-methylglutaric acid (H2MGL), 2,2′-bipyridine (bipy), or 1,10-phenanthroline (phen) in aqueous solution at 50°C afforded four new metal–organic complexes [Zn2(bipy)2(H2O)2(MGL)2] (1), [Zn2(phen)2(H2O)(MGL)2] (2), [Cd(bipy)(H2O)(MGL)] · 3H2O (3), and [Cd(phen)(H2O)(MGL)] · 2H2O (4), which were characterized by single crystal X-ray diffraction, IR spectra, TG/DTA analysis as well as fluorescence spectra. In 1, the [Zn(bipy)(H2O)]2+ moieties are linked by R- and S-2-methylglutarate anions to build up the centrosymmetric dinuclear [Zn2(bipy)2(H2O)2(MGL)2] molecules. In 2, the 1-D ribbon-like chains [Zn2(phen)2(H2O)(MGL)2] n can be visualized as from centrosymmetric dinuclear [Zn2(phen)2(H2O)2(MGL)2] units sharing common aqua ligands. Both 3 and 4 exhibit 1-D chains resulting from [Cd(bipy)(H2O)]2+ and [Cd(phen)(H2O)]2+, respectively, bridged alternately by R- and S-2-methylglutarate anions in bis-chelating fashion. The intermolecular and interchain π···π stacking interactions form supramolecular assemblies in 1 and 1-D chains in 24 into 2-D layers. The hydrogen bonded lattice H2O molecules are sandwiched between 2-D layers in 3 and 4. Fluorescence spectra of 14 exhibit LLCT π → π* transitions.  相似文献   

6.
Crystallization of an equimolar mixture of 1,10-dimethylphenanthroline (DMP) and manganese(II) chloride from N,N-dimethylformamide (DMF) has been studied. Rather than a useful route to a well-defined product, it was found that identical solutions could deposit crystals of three different compounds. The most common outcome was the formation of crystals of [MnCl2(dmp)(dmf)], 1, or co-crystallization of [MnCl2(dmp)(dmf)] and [{MnCl2(dmp)}2]. The co-crystals, 2, were always found to dissolve as crystals of 1 started to grow. Crystals of a third compound, [MnCl2(dmp)2], 3, were also isolated once.  相似文献   

7.
Complexes of naturally occurring hydroxynaphtho-quinone, lapachol (2-hydroxy-3(3-methyl-2-buthenyl)-1,4-naphthoquinone = HL) with Co(II), Ni(II) and Cu(II) have been prepared by reaction of the corresponding acetates with the ligand (HL) in ethanol. The molecular and crystal structures were determined for [CoL2(EtOH)2] (1), [NiL2(EtOH)2] (2), and [CuL2(py)2] (3). In all cases the deprotonated lapachol behaves as chelating bidentate ligand. The complexes were also characterized by elemental analyses, cyclic voltammetry, and FAB-MS.  相似文献   

8.
The saccharinato complexes [Zn(phen)2(sac)(H2O)]sac (1) and [Zn(sac)(dmp)(H2O)](sac) (2), where phen = 1,10-phenanthroline, dmp = 2,9-dimethyl-1,10-phenanthroline, and sac =saccharinato ion/ligand, were synthesized by the reaction of [Zn(sac)2(H2O)4] · 2H2O with ligands and have been characterized by elemental analysis, IR, and 1H NMR spectroscopies. Conductivity of complexes was measured in DMSO. Compound 1 is characterized by single crystal X-ray diffraction and compared with some isomorphous zinc-saccharinate complexes reported previously. Complex 1 crystallizes in the triclinic system, space group P 1 , with Z = 2, and consists of alternating slightly distorted octahedral [Zn(phen)2(sac)(H2O)]+ and noncoordinated saccharinate. The zinc bound aqua is hydrogen bonded to an oxygen of carbonyl in the saccharinate ligand and the SO2 group in the saccharinate counter-ion from an adjacent molecule. Intermolecular and intramolecular hydrogen bonds and C–H ··· O and C–H ··· N short contacts lead to a 3-D network.  相似文献   

9.
Two polypyridine ruthenium(II) complexes, [Ru(dmp)2(MCMIP)]2+ (1) (MCMIP = 2-(6-methyl-3-chromonyl)imidazo[4,5-f][1,10]-phenanthroline, dmp = 2,9-dimethyl-1,10-phenanthroline) and [Ru(dmb)2(MCMIP)]2+ (2) (dmb = 4,4′-dimethyl-2,2′-bipyridine), have been synthesized and characterized by elemental analysis, ES-MS and 1H NMR. The DNA-binding behaviors of these complexes were investigated by electronic absorption titration, fluorescence spectroscopy, viscosity measurements and thermal denaturation. The results show that 1 and 2 effectively bind to CT-DNA; the DNA-binding affinities are closely related to the ancillary ligand.  相似文献   

10.
A new triply-bridged dicopper(I) complex, [Cu2(μ-dppm)2(μ-HL)](NO3)2 (1), has been prepared via successive treatment of cupric nitrate trihydrate with bis(diphenylphosphino)methane (dppm) and 3,5-bis{6-(2,2′-dipyridyl)}pyrazole (HL) in 2?:?4?:?1 molar ratio in dichloromethane. X-ray diffraction analysis of 1 reveals that the two Cu(I)s are in highly distorted tetrahedral environments with a distance of 4.2775(10)?Å, triply bridged by two dppm ligands and one HL chelate as a bis-bidentate bridging ligand through two bipyridyl moieties. Intermolecular N···H–C hydrogen bonding and π···H–C interactions assemble the [Cu2(μ-dppm)2(μ-HL)]2+ cations into a 3-D supramolecular architecture with extended channels along the b-axis, filled with methanol and anions. Complex 1 shows weak low-energy absorptions at 350–425?nm, tentatively ascribed to Cu(I) to HL metal-to-ligand charge-transfer (MLCT) transition, probably mixed with some ILCT character inside HL. The emission is observed at ambient temperature for 1, both in solution and in the solid state, originating from the MLCT excited states.  相似文献   

11.
Three new Zn(II) complexes, [Zn(ox)(imb)] (1), [Zn2(mal)2(imb)2] (2), and [Zn(suc)(imb)]·H2O (3) (imb = 2-(1H-imidazolyl-1-methyl)-1H-benzimidazole, H2ox = oxalic acid, H2mal = malonic acid, H2suc = succinic acid), have been synthesized and structurally characterized. Complex 1 is a 3-D framework with a 4-connected diamond topology with the topological notation of 66. Complex 2 exhibits 2-D layers with (6,3) networks. Complex 3 displays a 3-D framework constructed through unusual 2-D → 3-D parallel interpenetration of corrugated 2-D (6,3) networks. IR spectra, PXRD patterns, thermogravimetric curves, and photoluminescence spectra are addressed.  相似文献   

12.
Five cobalt(II) complexes based on 1H-indazole-3-carboxylic acid (H2L), [Co(phen)(HL)2]·2H2O (1), [Co(5,5′-dimethyl-2,2′-bipy)(HL)2] (2), [Co(2,2′-bipy)2(HL)2]·5H2O (3), [Co2(2,9-dimethyl-1,10-phen)2(L)2] (4) and [Co2(6,6′-dimethyl-2,2′-bipy)2(L)2]·H2O (5) (2,2'-bipy = 2,2′-bipyridine, phen = 1,10-phenanthroline), have been synthesized and structurally characterized by elemental analyses, IR and UV-vis spectroscopies and single-crystal X-ray crystallography. The results indicate that 1–3 possess mononuclear Co(II) structures, while 4 and 5 exhibit binuclear structure. 1D water tape which is linked by the multiple hydrogen bonds was embedded in the 3D motif of complex 3. Complexes 4 and 5 show two orthogonal planes of motif that was constituted by phen/2,2′-bipy and indazole acid, respectively. The intermolecular interactions including hydrogen bonding and π-π stacking interactions are stabilizing these complexes. The interactions of the synthesized complexes with calf-thymus DNA (CT-DNA) have been investigated by UV-vis absorption titration, ethidium bromide displacement assay and viscosity measurements. The results reveal that the complexes could interact with CT-DNA via a groove binding mode. Their behavior rationalization was further theoretically studied by molecular docking.  相似文献   

13.
Five new coordination compounds, {[Mn(L)(CH3OH)2] · CH3OH · H2O} n (1), {[Cd(L)(DMF)2(H2O)] · H2O} n (2), {[Co(L)(CH3OH)4] · CH3OH}2 (3), {[Cd(L)(phen)(CH3OH)] · CH3OH} n (4), and {[Mn(L)(phen)(H2O)] · CH3OH} n (5) (L = 5-ferrocene-1,3-benzenedicarboxylic acid, phen = 1,10-phenanthroline) were obtained from different metal salts and L with or without 1,10-phen under mild conditions. Complex 1 is a 1-D ladder-like chain composed of 8-membered rings A and 16-membered rings B, which arrange alternately. Complex 2 is an infinite linear chain, further bridged to form a parallel double chain through different hydrogen-bond interactions. Complex 3 is a discrete dinuclear structure, while 4 is a neutral 1-D infinite zigzag coordination chain. Complex 5 is a 1-D linear chain with phen and ferrocene groups of L as pendants hanging on the different sides of the main chain. Variable temperature magnetic susceptibilities of 1 were measured and weak antiferromagnetic exchange interactions between the neighboring Mn(II) ions were found with J = ?0.95 cm?1.  相似文献   

14.
Eight Cu(II) complexes with N-(p-, m- or o-trifluoromethylbenzyl)iminodiacetate chelators (x-3F ligands) have been synthesized to promote C–F/H interligand interactions involving the F3C-group: {[Cu(μ2-p-3F)(H2O)]·3H2O]}n (1), [Cu(m-3F)(H2O)2] (2), [Cu(p-3F)(Him)(H2O)] (3), [Cu(m-3F)(Him)(H2O)] (4), [Cu(o-3F)(Him)(H2O)] (5), [Cu2(p-3F)2(H5Meim)2(H2O)2] (6), [Cu(m-3F)(H5Meim)(H2O)] (7), and [Cu(o-3F)(H5Meim)(H2O)] (8) [Him and H5Meim = imidazole and the “remote” tautomer 5-methylimidazole, respectively]. The compounds were studied by single-crystal X-ray diffraction, FT-IR, electronic spectra and coupled thermogravimetric + FT-IR methods. The conformation of the iminodiacetate chelating moiety (IDA group) is fac-NO + O(apical) in 1 and mer-NO2 in 2–8. The fac-IDA conformation observed in 1 is related to its polymeric structure and the coordination of a O’-carboxylate donor, from an adjacent complex unit, trans to the Cu–N(IDA) bond. The mer-IDA conformation in 2 is in agreement with similar compounds with an aqua ligand trans to the corresponding Cu–N(IDA) bond. As expected, the ternary complexes 3–8 feature a mer-IDA conformation. Some of the studied complexes exhibit disorder in the –CF3 group and C–H?F interligand interactions along with conventional N–H?O and O–H?O interactions. The thermal decomposition of all studied compounds under air flow produces variable amounts of trifluorotoluene.  相似文献   

15.
Reactions of cadmium(II) with 5-(4-carboxybenzylamino)isophthalic acid (H3L) in the presence of 2-(pyridin-2-yl)-1H-benzo[d]imidazole (pybim) and 2,2′-bipyridine (bpy) by hydrothermal method lead to two complexes, [Cd(HL)(pybim)]·H2O (1) and [Cd2(L)(HCOO)(bpy)2(H2O)]·H2O (2). Complexes 1 and 2 have been characterized by single-crystal and powder X-ray diffraction, Infrared spectra, and elemental and thermogravimetric analyses. 1 has a double-chain structure while 2 consists of uninodal 3-connected 2-D hcb networks with (63) topology. Luminescence and sorption properties of 1 and 2 were also investigated.  相似文献   

16.
Five picolinato zinc(II) and cadmium(II) complexes, [Zn(ntb)(pic)]ClO4·CH3OH·2H2O (1), [Zn(bbma)(pic)]NO3·2CH3OH (2), [Cd(ntb)(pic)]ClO4·0.75CH3OH·H2O (3), [Cd2(bbma)2(pic)2](ClO4)2 (4), and [Cd2(bbp)(bbp-H)(pic)2(C2H5OH)]ClO4 (5), have been synthesized, where pic is the anion of picolinic acid, ntb is tris(2-benzimidazolylmethyl)amine, bbma is bis(benzimidazol-2-yl-methyl)amine, and bbp is 2,6-bis(benzimidazol-2-yl)pyridine. All the complexes were characterized by X-ray single-crystal diffraction, elemental analysis, IR, fluorescence spectroscopy, and thermal gravimetric analysis. 13 are mononuclear complexes in which picolinate adopts a N,O-chelating mode. 4 is a symmetrical dinuclear complex bridged by two anti-parallel picolinates in a N,O,O-coordination mode. 5 is also a dinuclear complex in which only one picolinate is a bridge. A 1-D double chain is formed by extensive H-bonds and ππ stacking in 1, while single zigzag chains are formed in 5. Complexes 24 all exhibit 63-hcb 2-D frameworks. They extend to form four-connected 66-dia 3-D topological nets for 2 and 4 and five-connected 46·64-bnn 3-D topological nets for 3. The five complexes show emission maxima in the blue region in the solid state.  相似文献   

17.
Three mononuclear nickel(II) and copper(II) complexes, [Ni(L)2(py)2] (1), [Ni(L)2(DMF)(H2O)] (2), and [Cu(L)2] (3), where HL = 2-((Z)-(4-methoxyphenylimino)methyl)-4,6-dichlorophenol, py = pyridine and DMF = N,N-dimethylformamide, have been synthesized and their structures determined by single crystal X-ray analysis. Complexes 1–3 crystallized in the monoclinic system of the space groups C2/c, P21/n, and P21/c, respectively. The crystal structures of 1 and 2 present an octahedral geometry at the metal center and 3 shows a square-planar geometry. The FT-IR spectra, UV–vis spectra, and magnetic susceptibility measurements agree with the observed crystal structures. EPR spectra indicate a dx2–y2 ground state (g|| > g > 2.0023 and A|| > A) for 3 at RT and LNT. The results of simultaneous TG-DTA analyses of 1 and 3 showed the final degradation products are NiO for 1 and CuO for 3. The Schiff base (HL) behaves as monobasic bidentate ligand possessing N and O donor atoms. Electrochemical properties for the complexes are similar and involve two irreversible redox processes. Complex 3 exhibits the ability to inhibit jack bean urease, although its Schiff base has no ability to inhibit urease. Complex 1 exhibits more active scavenging effects against O2? than HL, 2 and 3 under the same conditions. Antibacterial screening activities of these complexes were also investigated.  相似文献   

18.
Three new Cd(II) complexes incorporating both 2-(1H-imidazol-1-methyl)-1H-benzimidazole (imb) and 1,4-benzenedicarboxylate (bdic2?), [CdCl(bdic)1/2(imb)2]n (1), {[Cd(bdic)(imb)(H2O)]·DMF·2H2O}n (2), and [Cd(bdic)(imb)]·3H2O}n (3), have been prepared and structurally characterized by single crystal X-ray diffraction. Bdic2? anions connect the?Cd-imb-Cd-imb?chains leading to a 2-D structure of 1. Bdic2?(A) and bdic2?(B) anions link the binuclear [Cd2(imb)2(H2O)2] units forming a 2-D structure of 2. Complex 3 features a 2-D structure involving supramolecular “double-layer” motifs. IR spectra and thermogravimetric curves are consistent with the results of the X-ray crystal structure analysis; 13 exhibit good fluorescence in the solid state at room temperature.  相似文献   

19.
Two mixed-ligand complexes, [Cu(L)(2imi)] (1) and [Ni(L)(2imi)]·MeOH (2) [L = 2-(((5-chloro-2-oxyphenyl)imino)methyl)phenolato) and 2imi = 2-methyl imidazole], have been prepared by the reaction of appropriate metal salts with H2L and 2-methyl imidazole. Their structures were characterized by microanalysis, FT-IR, UV–vis, molar conductivity, and 1H NMR for [Ni(L)(2imi)]·MeOH. The structures were determined using single crystal X-ray diffraction. Each four-coordinate metal center, Cu(II) in 1 and Ni(II) in 2, is surrounded by donors of Schiff base (L2?) and N of 2-methyl imidazole in square planar geometries. α-Amylase activities of these compounds have also been investigated. The experimental data showed that α-amylase was inhibited by Ni(II) complex while the Cu(II) complex causes a 1.3-fold decrease in Km value. Antimicrobial results show that these compounds, especially the Cu(II) complex, have potential for antibacterial activity against Gram negative and Gram positive bacteria and antifungal activity against Aspergillus fumigatus.  相似文献   

20.
Four novel Schiff base nickel(II) and copper(II) complexes, derived from the end‐on (μ1,1‐N3) azide, end‐to‐end (μ1,3‐NCS) thiocyanate, or phenolate oxygen bridges, have been synthesized and their crystal structures determined by X‐ray diffraction methods. They are the dinuclear double end‐on azide‐bridged [Ni2(L1)2(MeCN)2(μ1,1‐N3)2]·MeOH ( 1 ), the dinuclear double end‐on azide‐bridged [Ni2(L2)2(MeOH)2(μ1,1‐N3)2][Ni2(L2)2(OH2)2(μ1,1‐N3)2]·MeOH ( 2 ), the dinuclear double end‐to‐end thiocyanate‐bridged [Cu2(L3)2(μ1,3‐NCS)2] ( 3 ), and the dinuclear double phenolate O‐bridged [Cu2(L4)2(NCS)2] ( 4 ), where HL1, HL2, HL3 and HL4 are four tridentate Schiff bases obtained by the condensation of 3,5‐dibromosalicylaldehyde with N‐ethylethane‐1,2‐diamine, of 3,5‐dichlorosalicylaldehyde with N‐methylpropane‐1,3‐diamine, of 3‐bromo‐5‐chlorosalicylaldehyde with 2‐aminomethylpyridine, and of 5‐nitrosalicylaldehyde with 2‐aminomethylpyridine, respectively. Each nickel(II) atom in 1 and 2 is in an octahedral coordination, while each copper(II) atom in 3 and 4 is in a square pyramidal coordination. There exists crystallographic inversion centre symmetry in each of the complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号