首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A chemical sensor was developed to detect the explosive 2,4,6-trinitrotoluene (TNT) utilizing planar integrated optical waveguide (IOW) attenuated total reflection spectrometry. Submicron thick films of organically modified sol-gel polymers were deposited on the waveguide surface as the sensing layer. Sol-gels were molecularly imprinted for TNT using covalently bound template molecules linked to the matrix through 1 or 2 carbamate linkages. Upon chemical cleavage of the template and displacement of the TNT-like pendant groups from the matrix, shape-selective binding sites were created that possess a primary amine group. The amine was used to deprotonate bound TNT yielding an anionic form that absorbs visible light. Binding of TNT and subsequent conversion to the anion results in the attenuation of light propagating through the waveguide, thus creating a spectrophotometric device. Sensitivity can be achieved by taking advantage of the substantial pathlength provided by the use of single mode IOWs. The limit-of-detection to gas-phase TNT was found to be five parts-per-billion (ppbV) in ambient air at a flow rate of 40 mL min−1 given a 60 s sampling time. The sensor is highly selective for TNT due to the selectivity of binding site recognition of TNT and the subsequent generation of the TNT anion. Response to TNT is not reversible which results in an integrating sensor device which, in theory, can improve the ability to detect small amounts of the explosive if the exposure time is sufficient in length.  相似文献   

2.
Inverse opal films of molecularly imprinted polymers (MIP) were elaborated using the colloidal crystal template method. The colloidal crystals of silica particles were built by the Langmuir-Blodgett technique, allowing a perfect control of the film thickness. Polymerization in the interspaces of the colloidal crystal in the presence of bisphenol A (BPA) and removal of the used template provides 3D-ordered macroporous methacrylic acid-based hydrogel films in which nanocavities derived from bisphenol A are distributed within the thin walls of the inverse opal hydrogel. The equilibrium swelling properties of the nonimprinted (NIPs) and molecularly imprinted polymers (MIPs) were studied as a function of pH and bisphenol A concentration, while the molecular structures of the bulk hydrogels were analyzed using a cross-linked network structure theory. This study showed an increase in nanopore (mesh) size in the MIPs after BPA extraction as compared to NIPs, in agreement with the presence of nanocavities left by the molecular imprints of the template molecule. The resulting inverse opals were found to display large responses to external stimuli (pH or BPA) with Bragg diffraction peak shifts depending upon the hydrogel film thickness. The film thickness was therefore shown to be a critical parameter for improving the sensing capacities of inverse opal hydrogel films deposited on a substrate.  相似文献   

3.
4.
One‐monomer molecularly imprinted magnetic nanoparticles were prepared as adsorbents for selective extraction of bisphenol A from water in this study. A single bi‐functional monomer was adopted for preparation of the molecularly imprinted polymer, avoiding the tedious trial‐and‐error optimizations as traditional strategy. Moreover, bisphenol F was used as the dummy template for bisphenol A to avoid the interference from residual template molecules. These nanoparticles showed not only large adsorption capacity and good selectivity to the bisphenol A but also outstanding magnetic response performance. Furthermore, they were successfully used as magnetic solid‐phase extraction adsorbents of bisphenol A from various water samples, including tap water, river water, and seawater. The developed method was found to be much more efficient, convenient, and economical for selective extraction of bisphenol A compared with the traditional solid‐phase extraction. Separation of these nanoparticles can be easily achieved with an external magnetic field, and the optimized adsorption time was only 15 min. The recoveries of bisphenol A in different water samples ranged from 85.38 to 93.75%, with relative standard deviation lower than 7.47%. These results showed that one‐monomer molecularly imprinted magnetic nanoparticles had the potential to be popular adsorbents for selective extraction of pollutants from water.  相似文献   

5.
A bisphenol A (BPA) molecularly imprinted polymer, the composition of which was optimised using a chemometric approach, has been applied to the selective preconcentration of the template from aqueous samples. The selectivity of the polymer toward BPA and related compounds was evaluated chromatographically. The BPA-imprinted polymer was packed in a column and used for continuous on-column solid-phase extraction (MISPE) of aqueous samples followed by subsequent analysis by HPLC with fluorescence detection of the eluted fractions. The composition of the washing solvent applied in the MISPE procedure was optimised to favour the specific interactions of the MIP with BPA and to remove the non-selectively bound matrix components. The MISPE method has proven to be effective for selective preconcentration of BPA in aqueous samples (recoveries >84% obtained in the eluate for 10–100 mL sample volumes) enabling detection and quantification limits of 1.0 and 3.3 ng mL–1, respectively (based on 25 mL sample size). Analytical recoveries were between 92 and 101% for river water samples spiked with known amounts of BPA (30, 60, and 80 ng mL–1); relative standard deviations (RSD) were lower than 5.0%.  相似文献   

6.
This paper presents a set of investigations on the binding of a metabolic inhibitor, azide with prosthetic heme group of biomolecules, hemin chloride (Hem) and cytochrome c (Cyt c) immobilized on Au and Ag nanoparticles. A variety of spectroscopic tools have been used to understand the chemistry occurring on the nanoparticle surface. While the nature of binding of the model system, hemin has been investigated by UV-visible, fluorescence, FTIR, and Raman spectroscopies, the azide binding has been studied in detail by MALDI-TOF MS. Hemin binding on the nanoparticle surface occurs through the carboxylic acid groups. The hemin-N(3) adduct on the nanoparticle surface has been detected by mass spectrometry and its fragments have been studied by post source decay analysis. The chemistry of hemin on the nanoparticle surface has been compared with that of the protein, Cyt c. Azide binding of Cyt c requires thermal activation due to reduced accessibility of the heme center, unlike in the case of hemin. The binding chemistry is similar for free Cyt c and Cyt c bound to the nanoparticles.  相似文献   

7.
The highly selective, fast and effective sample pretreatment technique molecularly imprinted solid-phase extraction (MISPE) can overcome the low sensitivity of the highly efficient capillary electrophoresis-UV method (CE-UV). In this work, narrowly dispersible bisphenol A (BPA)-imprinted polymeric microspheres with a high capacity factor of k′ = 6.8 and an imprinted factor of I = 6.53 were investigated as selective solid-phase extraction (SPE) sorbents for use in extraction of BPA from different sample matrices (tap water, wastewater, Yangtze River water, soil from the Yangtze River, shrimp and human urine). Washing and eluting protocols of MISPE were optimized. Under optimal conditions, recoveries of MISPE were investigated. Recoveries were basically constant and the relative standard deviation (RSD) was lower than 5.8% when loading volumes changed from 1 to 50 mL. Recoveries ranged from 71.20% to 86.23% for different sample matrices. Compared with C18 SPE, MISPE had higher selectivity and recovery for BPA. BPA was determined with good accuracy and precision in different complex samples using CE-UV coupled with MISPE. Spiked recoveries ranged from 95.20% to 105.40%, and the RSD was less than 7.2%. Because a large loading volume was achieved, the enrichment efficiency of pretreatment and the sensitivity of this method were improved. The limits of detection of this MISPE-CE-UV method for BPA in tap water, wastewater, Yangtze River water, soil from the Yangtze River, shrimp and human urine were 3.0 μg L− 1, 5.4 μg L− 1, 6.9 μg L− 1, 2.1 μg L− 1, 1.8 μg L− 1 and 84 μg L− 1, respectively.  相似文献   

8.
Molecularly imprinted polymers (MIPs) were prepared using bisphenol A (BPA) as a template by precipitation polymerization. The polymer that had the highest binding selectivity and ability was used as solid-phase extraction (SPE) sorbents for direct extraction of BPA from different biological and environmental samples (human serum, pig urine, tap water and shrimp). The extraction protocol was optimized and the optimum conditions were as follows: conditioning with 5 mL methanol–acetic acid (3:1), 5 mL methanol, 5 mL acetonitrile and 5 mL water, respectively, loading with 5 mL aqueous samples, washing with 1 mL acetonitrile, and eluting with 3 mL methanol. MIPs can selectively recognize, effectively trap and preconcentrate BPA over a concentration range of 2–20 μM. Recoveries ranged from 94.03 to 105.3 %, with a relative standard deviation lower than 7.9 %. Under the optimal condition, molecularly imprinted SPE recoveries of spiked human serum, pig urine, tap water and shrimp were 65.80, 82.32, 76.00 and 75.97 %, respectively, when aqueous samples were applied directly. Compared with C18 SPE, a better baseline, better high-performance liquid chromatography separation efficiency and higher recoveries were achieved after molecularly imprinted SPE.   相似文献   

9.
We report on a voltammetric sensor for bisphenol A (BPA) that is based on an acetylene-black paste electrode modified with a chitosan film molecularly imprinted for BPA. The sensor responds linearly to BPA in the 80 nM to 10 μM concentration range, and the detection limit is 60 nM (at an S/N of 3). The use of a molecular imprint provides an efficient way for eliminating interferences from potentially interfering substances. The high sensitivity, selectivity and stability of the sensor demonstrate its practical application for the determination of BPA in plastic samples.
Figure
An acetylene black paste electrode modified with molecularly imprinted chitosan film was used as a novel voltammetric sensor for bisphenol A determination. The experimental results demonstrated that the combination of acetylene black with molecularly imprinted technique offered an attractive route to enhance the sensitivity and selectivity of the sensor.  相似文献   

10.
11.
Li  Lu  Fan  Limei  Dai  Yunlong  Kan  Xianwen 《Mikrochimica acta》2015,182(15):2477-2483

A molecularly imprinted polymer (MIP) was prepared by self-polymerization of dopamine in the presence of bovine hemoglobin (BHb) and then deposited on the surface of an electrode modified with gold nanoparticles (AuNPs). Scanning electron microscopy, cyclic voltammetry, and differential pulse voltammetry were employed to characterize the modified electrode using the hexacyanoferrate redox system as an electroactive probe. The effects of BHb concentration, dopamine concentration, and polymerization time were optimized. Under optimized conditions, the modified electrode selectively recognizes BHb even in the presence of other proteins. The peak current for hexacyanoferrate, typically measured at + 0.17 V (vs. SCE), depends on the concentration of BHb in the 1.0 × 10−11 to 1.0 × 10−2 mg mL−1 range. Due to the ease of preparation and tight adherence of polydopamine to various support materials, the present strategy conceivably also provides a platform for the recognition and detection of other proteins.

Gold nanoparticles and molecularly imprinted self-polymerization dopamine were modified on gold electrode surface to recognize and determine bovine hemoglobin. Under the optimized conditions, the modified electrode showed specific adsorption, selective recognition, and sensitive detection of bovine hemoglobin.

  相似文献   

12.
A sensitive electrochemical molecularly imprinted sensor was developed for the detection of estradiol, by electropolymerization of p-aminothiophenol functionalized gold nanoparticles in the presence of estradiol as template molecule. The extraction of the template leads to the formation of cavities that are able to recognize and bind estradiol with high affinity. The performance of the developed sensor for the detection of estradiol was investigated by linear sweep voltammetry using a hexacyanoferrate/hexacyanoferrite solution as redox probe. The molecularly imprinted sensor exhibits a broad linear range, between 3.6 fM and 3.6 nM and a limit of quantification of 1.09 fM. Compared to the non-imprinted sensor, the imprinted sensor exhibits high affinity for the binding of estradiol. Moreover, selectivity studies, performed towards binding of testosterone, a hormone with similar chemical structure, proved high sensor selectivity. Furthermore, the molecularly imprinted sensor was applied for the analysis of spiked river samples with good recoveries.  相似文献   

13.
In this study, new bio‐based magnetic molecularly imprinted polymer nanoparticles (∼23 nm) were synthesized from keratin extracted from chicken feathers and methacrylate‐functionalized Fe3O4 nanoparticles for its potential application in separation and removal of bisphenol A from water. The prepared magnetic molecularly imprinted polymer was characterized by Fourier‐transform infrared spectroscopy, field‐emission scanning electron microscopy, thermogravimetric analysis, alternative gradient field magnetometry, and energy‐dispersive X‐ray spectroscopy. The sorption of bisphenol A was investigated by changing the influencing factors such as pH, immersion time, Fe3O4 nanoparticles dosage, and the initial concentration of bisphenol A. Results illustrated that sorption was very fast and efficient (Q= 600 mg/g) having a removal efficiency of ∼98% in 40 min of immersion. The adsorption process showed better conformity with the Weber−Morris kinetics and the Freundlich isotherm model. The selectivity of bisphenol A by adsorbent was checked in the presence of hydroquinone, phenol, tetrabromobisphenol, and 4,4′‐biphenol as interferences.  相似文献   

14.
Bose PP  Drew MG  Banerjee A 《Organic letters》2007,9(13):2489-2492
The surface of a nanofiber that is formed from a self-assembling pseudopeptide has been decorated by gold and silver nanoparticles that are stabilized by a dipeptide. Transmission electron microscopic images make the decoration visible. In this paper, a new strategy of mineralizing a pseudopeptide based nanofiber by gold and silver nanoparticles with use of a two-component nanografting method is described.  相似文献   

15.
The authors describe the preparation of a molecularly imprinted polymer (MIP) film on the surface of electrodeposited hollow nickel nanospheres (hNiNS), and the use of this nanocomposite in an electrochemical sensor for dopamine (DA). The use of the 3-dimensional hNiNS as a support material enlarges the sensing area and conductivity, while the MIP film warrants improved selectivity for DA. Quantification based on the “MIP/gate effect” was performed by employing hexacyanoferrate as the electrochemical probe. Scanning electron microscopy, cyclic voltammetry and electrochemical impedance spectroscopy were applied to characterize the sensor materials. The electropolymerization condition such as pH value, functional monomer and ratio of template to monomer were optimized. By using dopamine (DA) as a model analyte, the sensor, if operated at 0.1 V vs. SCE, has fairly low detection limit of 1.7?×?10?14 M (at an S/N ratio of 3), two wide assay ranges of 5?×?10?14 to 1?×?10?12 M and 1?×?10?12 to 5?×?10?11 M, and superb selectivity.
Graphical Abstract An electrochemical sensor platform with a novel composite film composed of hollow nickel nanospheres (hNiNS) and molecularly imprinted polymer (MIP) was developed via a facile double-elecrodeposition method. The synergistic effects of hNiNS and MIP guarantee the ultrahigh sensitivity (down to 10?2 ppt) and selectivity of the sensor.
  相似文献   

16.
An amperometric biosensor is described for the detection of organophosphorus pesticides. It is based on the enzyme tyrosinase immobilized on platinum nanoparticles and the use of a glassy carbon electrode modified with graphene. Tyrosinase was immobilized on the electrode surface via electrostatic interaction between a monolayer of cysteamine and the enzyme. In the presence of catechol as a substrate, the pesticides chlorpyrifos, profenofos and malathion can be determined as a result of their inhibition of the enzyme which catalyzes the oxidation of catechol to o-quinone. Platinum nanoparticles and graphene effectively enhance the efficiency of the electrochemical reduction of o-quinone, thus improving sensitivity. Under optimum experimental conditions, the inhibition effect of the pesticides investigated is proportional to their concentrations in the lower ppb-range. The detection limits are 0.2, 0.8 and 3?ppb for chlorpyrifos, profenofos and malathion, respectively. The biosensor displays good repeatability and acceptable stability.
Figure
A tyrosinase-based biosensor was developed for determining organophosphorus pesticides. The biosensor owned high sensitivity by combining platinum nanoparticles and graphene, and the immobilized tyrosinase had a great affinity to catechol. Low detection limits and reasonable liner ranges were obtained. The biosensor also displayed good repeatability and acceptable stability.  相似文献   

17.
18.
We report on the use of Neem (Azadirachta indica) leaf broth in the extracellular synthesis of pure metallic silver and gold nanoparticles and bimetallic Au/Ag nanoparticles. On treatment of aqueous solutions of silver nitrate and chloroauric acid with Neem leaf extract, the rapid formation of stable silver and gold nanoparticles at high concentrations is observed to occur. The silver and gold nanoparticles are polydisperse, with a large percentage of gold particles exhibiting an interesting flat, platelike morphology. Competitive reduction of Au3+ and Ag+ ions present simultaneously in solution during exposure to Neem leaf extract leads to the synthesis of bimetallic Au core-Ag shell nanoparticles in solution. Transmission electron microscopy revealed that the silver nanoparticles are adsorbed onto the gold nanoparticles, forming a core-shell structure. The rates of reduction of the metal ions by Neem leaf extract are much faster than those observed by us in our earlier studies using microorganisms such as fungi, highlighting the possibility that nanoparticle biological synthesis methodologies will achieve rates of synthesis comparable to those of chemical methods.  相似文献   

19.
Surface-enhanced Raman spectroscopy (SERS) is a good candidate for the development of fast and easy-to-use diagnostic tools, possibly used on biofluids in point-of-care or screening tests. In particular, label-free SERS spectra of blood serum and plasma, two biofluids widely used in diagnostics, could be used as a metabolic fingerprinting approach for biomarker discovery. This study aims at a systematic evaluation of SERS spectra of blood serum and plasma, using various Ag and Au aqueous colloids, as SERS substrates, in combination with three excitation lasers of different wavelengths, ranging from the visible to the near-infrared. The analysis of the SERS spectra collected from 20 healthy subjects under a variety of experimental conditions revealed that intense and repeatable spectra are quickly obtained only if proteins are filtered out from samples, and an excitation in the near-infrared is used in combination with Ag colloids. Moreover, common plasma anticoagulants such as EDTA and citrate are found to interfere with SERS spectra; accordingly, filtered serum or heparin plasma are the samples of choice, having identical SERS spectra. Most bands observed in SERS spectra of these biofluids are assigned to uric acid, a metabolite whose blood concentration depends on factors such as sex, age, therapeutic treatments, and various pathological conditions, suggesting that, even when the right experimental conditions are chosen, great care must be taken in designing studies with the purpose of developing diagnostic tests.  相似文献   

20.
A novel chemiluminescence (CL) microfluidic system incorporating a molecularly imprinted polymer (MIP) preconcentration step was used for the determination of chloramphenicol in honey samples. The MIP was prepared by using chloramphenicol as the template, diethylaminoethyl methacrylate (DAM) as the function monomer, ethylene glycol dimethacrylate (EGDMA) as the cross-linking monomer, 2, 2′-dimethoxy-2-phenylacetophenone (DMPA) as the free radical initiator and toluene and dodecanol as the solvent. The MIP was pre-loaded into a 10 mm long, 2 mm wide and 150 μm deep channel in a planar glass microfluidic device. When the sample containing chloramphenicol was introduced into the microfluidic device it was first preconcentrated on the MIP then detected by an enhancement effect on the chemiluminescence reaction of tris(2, 2′-bipyridyl) ruthenium(II) with cerium(IV) sulphate in sulphuric acid. A micro-syringe pump was used to pump the reagents. The CL intensity was linear in relationship to the chloramphenicol concentrations from 1.55 × 10−4 to 3.09 × 10−3 μmol L−1 (r2 = 0.9915) and the detection limit (3σ) and the quantitation limit (10σ) were found to be 7.46 × 10−6 and 2.48 × 10−5 μmol L−1, respectively. This method offered a high selectivity and sensitivity for quantitative analysis of chloramphenicol in the honey samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号