首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The strong surface hydration layer of nonfouling materials plays a key role in their resistance to nonspecific protein adsorption. Poly(ethylene glycol) (PEG) is an effective example of materials that can resist nonspecific protein adsorption and cell adhesion. Thus, the strong interaction between water molecules and PEG was investigated through each T(2) component in water/PEG mixtures using multiexponential inversion of T(2) relaxation time measured by the Carr-Purcell-Meiboom-Gill (CPMG) sequence of low-field nuclear magnetic resonance (LF-NMR). Results show that about one water molecule is tightly bound with one ethylene glycol (EG) unit, and additional water molecules over 1:1 ratio mainly swell the PEG matrix and are not tightly bound with PEG. This result was also supported by the endothermic behavior of water/PEG mixtures measured by differential scanning calorimetry (DSC). It is believed that the method developed could be also applied to investigate various interactions between macromolecules and other small molecules without using deuterium samples, which might open a novel route to quantitatively measure guest-host interactions in the future.  相似文献   

2.
Using 26 NMR spectrometers, the Research Group on NMR, the Society of Polymer Science, Japan observed the 1H NMR chemical shift, resolution, and signal intensity; 13C NMR chemical shift, resolution, and signal intensity; the effect from initiator fragment signal; 1H spin-lattice relaxation times; 13C spin-lattice relaxation times; and 13C nuclear Overhauser enhancement of radically polymerized poly(methyl methacrylate). Excellent reliability was found after comparison between the data from different spectrometers. Molecular motion of this polymer was analyzed with a term of 3τ model.  相似文献   

3.
4.
Mass spectrometry (MS) and nuclear magnetic resonance (NMR) have been combined to achieve the complete microstructural characterization of a poly(methacrylic acid)-poly(methyl methacrylate) (PMAA-PMMA) copolymer synthesized by nitroxide-mediated polymerization. Various PMAA-PMMA species could be identified which mainly differ in terms of terminaisons. 1H and 13C NMR experiments revealed the structure of the end-groups as well as the proportion of each co-monomer in the copolymers. These end-group masses were further confirmed from m/z values of doubly charged copolymer anions detected in the single stage mass spectrum. In contrast, copolymer composition derived from MS data was not consistent with NMR results, obviously due to strong mass bias well known to occur during electrospray ionization of these polymeric species. Tandem mass spectrometry could reveal the random nature of the copolymer based on typical dissociation reactions, i.e., water elimination occurred from any two contiguous MAA units while MAA-MMA pairs gave rise to the loss of a methanol molecule. Polymer backbone cleavages were also observed to occur and gave low abundance fragment ions which allowed the structure of the initiating end-group to be confirmed.  相似文献   

5.
In this study, the transverse relaxation time (T2) of activated carbon (AC) in different relative environment humidity was detected firstly by low-field nuclear magnetic resonance (LFNMR). The pore size (diameter) of AC distributions was calculated by the relationship between T2 and surface relaxation rate (ρ), where ρ was obtained by the detection of nine porous materials with known pore size. The results showed that the pore size distributions of AC calculated by ρ < 0.19 nm/ms were in good agreement with that obtained by nitrogen adsorption method and proved that LFNMR as a new detection method was feasible for characterizing AC pore size distribution.  相似文献   

6.
7.
A Cl-terminated poly(methylphenyl)silane is synthesized and analyzed by 29Si-NMR spectroscopy. Assignments are proposed for the different peaks observed. A modification of the chemical shifts of the peaks relative to the main chain atoms is observed upon heating. From these experimental results and computational calculations on model compounds, the assignments of the three main peaks to configurationally different Si atoms are confirmed. © 1996 John Wiley & Sons, Inc.  相似文献   

8.
9.
A high-temperature, high-resolution 13C nuclear magnetic resonance spectroscopy technique was developed for the analysis of poly (p-phenylene sulfide) (HT/HR NMR of PPS). This technique can be applied to the identification and quantitative analysis of end groups and polymer structure in high-temperature polymers where solution temperatures above 200°C are required for analysis. Verification of calculated 13C NMR shift values of chloro-terminated and hydrogen-terminated end groups was made by HT/HR NMR of two oligo (p-phenylene sulfide) model compounds. Identification of the chlorine end group was made in high-molecular weight PPS. On the high-molecular weight PPS, identification and quantitative analysis of amino and N-alkylamino end groups were possible only after derivatization of the polymer with 13C-enriched benzoyl chloride.  相似文献   

10.
介绍了国产1.5T核磁共振弛豫时间分析仪的基本组成、性能指标,研发过程中攻克的技术难题。该仪器主要由磁体部分、电子部分、软件部分组成,具有体积小、信噪比高、检测无损、使用和维护简便和造价低廉等优点。同时对该系统磁体频率和磁信号的稳定性进行了相关的测试,结果表明该系统稳定可靠。该仪器的磁场强度增加到1.5T,在同等外界条件和环境下,信噪比增加约为0.5T系统的10倍,检测灵敏度大幅度提高;该仪器为食品品质鉴定、食品安全检测、医学诊断、生物标志物的大规模筛选等生化分析提供一个全新的途径。  相似文献   

11.
12.
13.
14.
In order to determine the conformation of poly(ethylene oxide) (PEO), 13C satellite spectra of PEO, 1,2-dimethoxyethane (DME), and dioxane were measured at various temperatures in various solvents, and analyzed. Relations between the coupling constants were derived from the linearity between the parameters N = JAB + JA′B and L = JA′B in AA′BB′ spectra of PEO and DME. The vicinal coupling constants for the individual rotational isomers were obtained from the above relations and the temperature dependences of N and L and the enthalpy differences were calculated in each solvent. The gauche rotamer is more stable than the trans isomer by 250–500 cal/mole in all cases examined.  相似文献   

15.
The minimization of nonspecific protein adsorption is a crucial step in the development of bioseparation processes, immunoassays, and affinity diagnostics. Among the numerous biomaterials, polyzwitterions are known to effectively suppress protein and cell adhesion. This article describes the formation of monodisperse polymer microspheres coated with polysulfobetaine with the aim to limit nonspecific adsorption of bovine serum albumin (BSA) as a model protein. In this process, 2‐μm poly(glycidyl methacrylate) (PGMA) microspheres were prepared by dispersion polymerization. To render the microspheres hydrophilic and biocompatible, [3‐(methacryloylamino)propyl]dimethyl(3‐sulfopropyl)ammonium hydroxide (MPDSAH) was grafted from the surface by reversible addition‐fragmentation chain transfer (RAFT) polymerization. Elemental analysis of the modified microspheres revealed up to 20 wt % of poly{[3‐(methacryloylamino)propyl]dimethyl(3‐sulfopropyl)ammonimum hydroxide} (PMPDSAH). The microspheres were characterized in terms of particle size, morphology, and zeta potential. The amount of BSA nonspecifically adsorbed on the PMPDSAH‐modified microspheres decreased to half of that captured on the unmodified PGMA microspheres. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2273–2284  相似文献   

16.
Individual hydration water molecules in aqueous protein solutions have been observed using experimental schemes for homonuclear two-dimensional and heteronuclear three-dimensional NMR experiments in H2O solution, which do not require suppression of the solvent line by presaturation. In these experiments, the location of the hydration waters is determined from their nuclear Overhauser effects (NOE s) with individual hydrogen atoms of distinct amino acid residues. In the basic pancreatic trypsin inhibitor (BPTI ), four internal water molecules that had been reported in three different crystal forms were also found to be in the same locations in the solution structure, with lifetimes with respect to exchange of the water protons in excess of 0.3 ns. Additional NOE s with polypeptide protons located on the protein surface may involve either hydration water molecules or hydroxyl protons of amino acid side chains. Their total number is small compared to the number of NOE s expected from the hydration water molecules identified in the crystal structures of BPTI .  相似文献   

17.
The miscibility of polycarbonate (PC) with poly(methyl methacrylate-co-cyclohexyl methacrylate) (PMCHM) and with poly(methyl methacrylate) (PMMA) was studied by nuclear magnetic resonance (NMR) 1H spin-lattice relaxation time in the rotating frame (1H T1p), differential scanning calorimetry (DSC), and transmission electron microscopy (TEM). A blend of PC/PMCHM (50/50 wt/wt) with the acrylic component PMCHM, a copolymer of PMMA and poly(cyclohexyl methacrylate) (80/20 wt/wt), shows only one T1p value, which indicates high miscibility in this blend. A blend of PC/PMMA (50/50 wt/wt) shows two 1H T1p values, which are similar to those of the homopolymers PC and PMMA. These results indicate high immiscibility. The “domain size” calculated from NMR results of the miscible blend PC/PMCHM is approximately 40 Å. The results of DSC and TEM are similar to the NMR results. However, TEM results show the presence of 3% PC domains in the PC/PMCHM blend, which are not seen by NMR or DSC. Those PC domains are approximately 500 Å. A strong intramolecular repulsion in the copolymer PMCHM and specific intermolecular interactions between PC and PMMA may explain the miscibility in the PC/PMCHM system. © 1994 John Wiley & Sons, Inc.  相似文献   

18.
Biocompatible and zwitterionic poly(sulfobetaine methacrylate) (PSBMA) was grafted onto the surface of initiator-modified silica nanoparticles via surface-initiated atom transfer radical polymerization. The resultant samples were characterized via nuclear magnetic resonance, Fourier transform infrared spectroscopy, transmission electron microscopy, and thermogravimetric analysis. Their molecular weights and molecular weight distributions were determined via gel permeation chromatography after the removal of silica by etching. Moreover, the phase behavior of these polyzwitterionic-grafted silica nanoparticles in aqueous solutions and stability in protein/PBS solutions were systematically investigated. Dynamic light scattering and UV-visible spectroscopy results indicate that the silica-g-PSBMA nanoparticles exhibit an upper critical solution temperature (UCST) in aqueous solutions, which can be controlled by varying the PSBMA molecular weight, ionic strength, silica-g-PSBMA nanoparticle concentration, and solvent polarity. The UCSTs shift toward high temperatures with increasing PSBMA molecular weight and silica-g-PSBMA nanoparticle concentration. However, increasing the ionic strength and solvent polarity leads to a lowering of the UCSTs. The silica-g-PSBMA nanoparticles are stable for at least 72 h in both negative and positive protein/PBS solutions at 37 °C. The current study is crucial for the translation of polyzwitterionic solution behavior to surfaces to exploit their diverse properties in the development of new, smart, and responsive coatings.  相似文献   

19.
The proton-magnetic-resonance spectra were investigated for 19 -aminoethoxysilanes in the R4-nSi(OCH2CH2NR2)n and R3-m(CH2CH2OR)m series, where R=CH3, C2H5, or C6H5; R=H, CH3, C2H5, or Si(CH3)3; and the values of n and m are 1–4 and 1–3, respectively. In the Si-O-C-C-N system the effect of substituents at the nitrogen or silicon atoms is transmitted either by conjugation in the chain or, when the conjugation is broken, by an induction mechanism.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号