首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High-performance liquid chromatographic (HPLC) separation of stereoisomeric cyclic beta-substituted alpha-quaternary alpha-amino acids was performed by ligand-exchange on a copper(II)-D-penicillamine chiral stationary phase. The investigated amino acids are the 1-amino-2-methylcyclohexanecarboxylic acids, the 1-amino-2-hydroxycyclohexanecarboxylic acids, the 1-amino-2-methylcyclopentanecarboxylic acids and the trans-configured 1,2-diaminocyclohexanecarboxylic acids. The effects of the mobile phase composition (copper(II) concentration, type and content of organic modifier, pH) and the temperature on the enantio- and diastereoselectivity were studied and the conditions were optimised to resolve the four stereoisomers of each of the said amino acids in single chromatographic runs. A reversal of the elution order occurred for enantiomers of some of the amino acids in dependence on the acetonitrile content of the eluent. This phenomenon is explained by at least two different copper(II) complexes of the tridentate ligand penicillamine.  相似文献   

2.
A high-performance liquid chromatographic (HPLC) method has been developed for separation of the enantiomers of thyroxine (T4). A silica gel column was used in conjunction with a chiral mobile phase (CMP) comprising 35:65 (v/v) acetonitrile–water containing 0.1 mM copper(II) acetate, 0.2 mM L-proline, and 0.5 mM triethylamine (TEA), pH 5.42. The flow rate was 1.0 mL min?1 and the analysis temperature 40 °C. L-T4 was eluted before D-T4 by mobile phase containing L-proline copper complex. Inversion of the chirality of the mobile phase resulted in reversal of this order of elution. A racemic mobile phase containing DL-proline copper complex resulted in no separation. The enantioseparation phenomenon is discussed. When the method was used to determine the concentration of T4 enantiomers in the serum of a patients with thyroid disease, different concentrations of T4 enantiomers were found in different patents.  相似文献   

3.
A study is conducted to determine the amino acid, fatty acid, and carbohydrate content of breadfruit using high-performance liquid chromatography (HPLC) and gas chromatography (GC). An HPLC method is used for the determination of amino acids and fatty acids in breadfruit. Representative amino acid samples are derivatized with phenylisothiocianate and the resulting phenylthiocarbamyl derivatives are separated on a reversed-phase column by gradient elution with a 0.05M ammonium acetate buffer and 0.01M ammonium acetate in acetonitrile-methanol-water (44:10:46, v/v). Representative fatty acid samples are derivatized with phenacyl bromide and the resulting fatty acid phenacyl esters are separated on a reversed-phase column by gradient elution with acetonitrile and water. Amino acid and fatty acid derivatives are detected by ultraviolet detection at 254 nm. The analysis of the carbohydrates in breadfruit employs a GC method. Carbohydrates are derivatized using trimethylchlorosilane and hexamethyldisilazane to form trimethylsilyl ethers. Compounds in the samples are separated by the temperature programming of a GC using nitrogen as the carrier gas. Percent recoveries of amino acids, fatty acids, and carbohydrates are 72.5%, 68.2%, and 81.4%, respectively. The starch content of the breadfruit is 15.52 g/100 g fresh weight.  相似文献   

4.
采用环糊精为手性固定相,建立了黄烷酮对映体的高效液相色谱(HPLC)手性拆分方法。考察了流动相组成、流动相比例、流速及柱温对黄烷酮对映体拆分的影响。结果表明,以CD-CSP2手性色谱柱分离,采用乙腈-水(体积比30∶70)为流动相,在流速为1.0mL/min,温度30℃,检测波长254nm下,黄烷酮对映体能达到基线分离,且具有较好的重复性和稳定性,可用于对映体的拆分及质量控制。且R-黄烷酮与固定相的作用弱于S-黄烷酮,在色谱柱中首先被洗脱。以面积归一化法计算可知黄烷酮样品中,R-黄烷酮含量为53.94%,S-黄烷酮含量为46.06%。  相似文献   

5.
N‐(2,4‐dinitrophenyl)‐proline and N‐(2,4‐dinitrophenyl)‐serine were enantiomerically resolved on the BSA chiral stationary phase by HPLC in reversed‐phase mode. Effects of chromatographic conditions on enantioseparation and elution order have been investigated in detail. For these two samples, reversal of enantiomer elution order was observed by changing buffer pH, the content of acetonitrile, or alcohol modifiers in mobile phase, which is firstly reported in the BSA chiral stationary phase studies. More interestingly, combined effect between buffer pH and the content of acetonitrile was also observed. In addition, coelution range of enantiomers varied along with the content of acetonitrile in mobile phase.  相似文献   

6.
TLC and HPLC methods were developed for indirect chiral separation of penicillamine (3,3-dimethylcysteine) enantiomers after derivatization with Marfey's reagent (FDNP-Ala-NH(2)) and two of its structural variants, FDNP-Phe-NH(2) and FDNP-Val-NH(2). The binary mobile phase of phenol-water (3:1 v/v) and solvent combinations of acetonitrile and triethylamine phosphate buffer were found to give the best separation in normal and reversed-phase TLC, respectively. The diastereomers were also resolved on a reversed-phase C18 HPLC column with gradient elution of acetonitrile and 0.01 m trifluoroacetic acid. The results due to these three reagents were compared. The method was successful for checking the enantiomeric impurity of l-penicillamine in d-penicillamine and to check the enantiomeric purity of pharmaceutical formulations of d-penicillamine. The method was validated for linearity, repeatability, limit of detection and limit of quantification.  相似文献   

7.
Stereoselective analytical HPLC separations have been developed for a series of biologically active chiral 2-pyrazolines (1-22) to be used in monitoring their resolution reactions or to custom semipreparative HPLC separations prior to biological assessment of both enantiomers. Polysaccharide-based chiral stationary phases (CSPs), namely, Lux amylose-2 and cellulose-2, have been used. Both normal (n-hexane/ethanol) and polar organic (ethanol, methanol, acetonitrile, or mixtures thereof) elution modes were very beneficial for the achievement of baseline separations. The impact of various chemical moieties embedded in the structures of 2-pyrazolines 1-22 and the adopted stationary phases on chiral recognition has been investigated. A case of reversed order of elution following alterations in either stationary phase or elution mode has been observed. Our findings recommend that normal elution mode can be used for optimizing semipreparative HPLC methods whereas polar organic mobile phases (such as acetonitrile and ethanol) are more suited to stereoselective reactions monitoring, routine quality control work, or for pharmacological and toxicological assays. These results settle the implementation of polysaccharide-based CSPs using different elution modes and declare the practicality of such CSPs in stereoselective HPLC.  相似文献   

8.
Methadone is widely used for the treatment of opioid dependence. HPLC and CE are widespread methods for drug monitoring and metabolism studies. Although the methods are widely used for methadone and its main metabolite EDDP [1, 2], a definite direct peak identification for EDDP enantiomers is not described. This study describes a method for specific identification of each peak in the chromatogram and electropherogram of methadone analysis. The result of the study demonstrates differences in the elution order of the enantiomers of methadone and EDDP due to the technique used for analysis. The elution order of EDDP using HPLC is interchanged with respect to the order of the peaks in the electropherogram.  相似文献   

9.
应用自制的有机化合物结构解析专家系统ESESOC, 对与28个外消旋类化合物(特殊的氨基酸)分子手性中心有关的对称性问题进行了判别, 如对称面、对称点和对称轴等. 同时用的开发的程序对这些化合物的构型进行了自动识别和标示. 在此基础上, 以手性拓扑指数为参数, 利用Fisher意义下的分析和人工神经网络法, 对这些化合物的对映体进行了高效液相色谱分离中先后淋洗出的的对映体进行分类判别. 结果表明, 人工神经网络法优于Fisher意义下的判别分析.  相似文献   

10.
In this paper, a fluorescein isothiocyanate (FITC) precolumn derivatization technique in conjunction with an HPLC-in-capillary optical fiber laser-induced fluorescence (HPLC-ICOF-LIF) detection method has been developed for determination of amino acids. The HPLC separation of FITC-labeled amino acids and the ICOF-LIF detection system are studied and optimized. Optimum separation conditions were obtained with a gradient elution program of acetonitrile and phosphate buffer (10 mM, pH 6.8). The ICOF-LIF detection system comprises a 530-??m capillary and a 380-??m optical fiber. The analyses of amino acids display excellent linear relationship between peak area and concentration with correlation coefficients greater than 0.999 and the method also provides good repeatability with RSD < 3%. The detection limits for FITC-tagged amino acids are very low and the lowest LOD for tyrosine is 51 pM. The proposed method has been successfully applied to determination of amino acids in human serum. Our developed HPLC-ICOF-LIF system is cheap, simple, stable, and sensitive which is potentially useful for the formulation analysis and bioanalysis.  相似文献   

11.
An extensive series of free amino acids and analogs were directly resolved into enantiomers (and stereoisomers where appropriate) by HPLC on zwitterionic chiral stationary phases (Chiralpak ZWIX(+) and Chiralpak ZWIX(?)). The interaction and chiral recognition mechanisms were based on the synergistic double ion‐paring process between the analyte and the chiral selectors. The chiral separation and elution order were found to be predictable for primary α‐amino acids with apolar aliphatic side chains. A systematic investigation was undertaken to gain an insight into the influence of the structural features on the enantiorecognition. The presence of polar and/or aromatic groups in the analyte structure is believed to tune the double ion‐paring equilibrium by the involvement of the secondary interaction forces such as hydrogen bonding, Van der Waals forces and π–π stacking in concert with steric parameters. The ZWIX chiral columns were able to separate enantiomers and stereoisomers of various amphoteric compounds with no need for precolumn derivatization. Column switching between ZWIX(+) and ZWIX(?) is believed to be an instrumental tool to reverse or control the enantiomers elution order, due to the complementarity of the applied chiral selectors.  相似文献   

12.
The separation of enantiomers of 10 chiral antimycotic drugs was studied on polysaccharide-based chiral columns with polar organic mobile phases. The emphasis was placed on some interesting examples of enantiomer elution order reversal observed depending on the chemistry of the chiral selector, separation temperature, major component, as well as the minor additive in the mobile phase. In particular, it was found that the elution order of enantiomers of chiral drug terconazole was opposite on cellulose- and amylose-based columns with the same pendant group. The affinity pattern of enantiomers of another chiral drug bifonazole was opposite towards to two amylose-based chiral selectors with different pendant groups. The affinity pattern of terconazole enantiomers also changed on some columns when the alcohol-based mobile phase was replaced with acetonitrile. An interesting effect of the minor acidic (formic acid) additives to the mobile phase on the affinity pattern of terconazole enantiomers was observed on Cellulose-2 and Cellulose-4 columns. In addition, a reversal of elution order of bifonazole enantiomers was observed on Amylose-2 column by variation of a separation temperature.  相似文献   

13.

The separation of enantiomers of 10 chiral antimycotic drugs was studied on polysaccharide-based chiral columns with polar organic mobile phases. The emphasis was placed on some interesting examples of enantiomer elution order reversal observed depending on the chemistry of the chiral selector, separation temperature, major component, as well as the minor additive in the mobile phase. In particular, it was found that the elution order of enantiomers of chiral drug terconazole was opposite on cellulose- and amylose-based columns with the same pendant group. The affinity pattern of enantiomers of another chiral drug bifonazole was opposite towards to two amylose-based chiral selectors with different pendant groups. The affinity pattern of terconazole enantiomers also changed on some columns when the alcohol-based mobile phase was replaced with acetonitrile. An interesting effect of the minor acidic (formic acid) additives to the mobile phase on the affinity pattern of terconazole enantiomers was observed on Cellulose-2 and Cellulose-4 columns. In addition, a reversal of elution order of bifonazole enantiomers was observed on Amylose-2 column by variation of a separation temperature.

  相似文献   

14.
This work focuses on the development of a suitable working procedure for preconcentration of amino acids enantiomers from water samples using a solid phase extraction. The three types of ion exchangers with various capabilities have been used. The effect of experimental conditions in SPE procedure employing strong anion exchange (SAX), weak (WCX) and strong cation exchange (SCX) cartridges (such as sample volume, pH, origin of elution solvent and its volume) on effective preconcentration of the model set of amino acids has been studied in detail. The enantiomers of isolated and preconcentrated amino acids have been analysed by GC on three capillary columns coated with chiral selectors. The different amino acids derivatives have been investigated in order to achieve optimal resolution of biogenic amino acids and their enantiomers. The best separation of amino acid enantiomers has been obtained on a Chirasil-L-Val column analysing their N-TFA methyl esters. It has been shown that SCX-SPE cartridge with sulfonic groups attached on silicagel support is most suitable for isolation and preconcentration of amino acids from water samples. For this sample treatment procedure, the overall recovery of extraction process has been calculated as an average value from three measurements. It has been found, that recoveries are practically identical for both enantiomers of a particular amino acid and varies in the range 75-99% depending on the type of amino acid. The effectivity of this sample preparation and GC method has been verified by preconcentration of amino acids from orange juice fortified by racemic mixture of some selected amino acids.  相似文献   

15.
An efficient and sensitive enantioselective method for simultaneous determination of three acylamino acid fungicides in vegetables and fruits was presented by high-performance liquid chromatography (HPLC) coupled with tandem mass spectrometry. The three fungicides (benalaxyl, furalaxyl, and metalaxyl) residues in samples were extracted with acetonitrile containing 1% acetic acid and an aliquot was cleaned up with Si-(CH(2) )(3) -NH-(CH(2) )(2) -NH(2) and C(18) sorbent. Complete enantioseparation of three acylamino acid fungicides enantiomers was obtained under reversed-phase conditions on a cellulose tris (4-chloro-3-methylphenylcarbamate) column at 25°C using acetonitrile-0.1% formic acid solution (45:55, v/v) as a mobile phase. The elution orders of the eluted enantiomers were determined by a circular dichroism (CD) detector. The linearity, matrix effect, recovery, and precision were evaluated. Good linearity was obtained over the concentration range of 0.5-250 μg/L for each enantiomer in the standard solution and sample matrix calibration curves. There was no significant matrix effect for three fungicides determination based on the method. The inter-day mean recoveries, intra-day repeatability, and inter-day reproducibility varied from 81.3 to 95.7%, 2.2 to 9.4%, and 2.3 to 9.6%, respectively. The method provided high selectivity and sensitivity, and limits of quantification for enantiomers of three fungicides in vegetables and fruits were both 1 μg/kg.  相似文献   

16.
The separation of enantiomers of five chiral dihydropyridine derivatives was studied on five different polysaccharide‐based chiral HPLC columns with various normal‐phase (NP), polar organic, and reversed‐phase eluents. Along with the successful separation of analyte enantiomers, the emphasis of this study was on enantiomer elution order (EEO) with various columns and mobile phase composition. The interesting phenomenon of reversal of EEO, recently reported in the case of amlodipine (AML) depending on the concentration of formic acid in acetonitrile, was also confirmed with NP eluents. Under RP conditions at relatively low water content, the EEO of AML could also be reverted by varying the concentration of formic acid in the mobile phase. However, at higher water content the same parameter did not affect the EEO, but only induced gradual decrease in resolution up to complete co‐elution of enantiomers. Additionally, in organic‐aqueous mobile phases retention factors decreased with increasing water content but only up to 20% (v/v), while above this concentration the expected typical RP behavior was observed. The presence of the commonly used additive diethylamine in the mobile phase seems important for observing a reversal in EEO with increasing concentration of formic acid. The reversal of the EEO was characteristic of AML only and was not observed for any of other dihydropyridines included in this study.  相似文献   

17.
The enantiomeric resolution of an extended range of di-metallo supramolecular triple-helical molecules are reported. The ligands for all complexes are symmetric with two units containing an aryl group linked via an imine bond to a pyridine. Alkyl substituents have been attached in different positions on the ligand backbone. Previous work on the parent compound, whose molecular formula is [Fe(2)(C(25)H(20)N(4))(3)]Cl4, showed that it could be resolved into enantiomerically pure solutions using cellulose and 20 mM aqueous sodium chloride. In this work a range of mobile phases have been investigated to see if the separation and speed of elution could be increased and the amount of NaCl co-eluted with the compounds decreased. Methanol, ethanol and acetonitrile were considered, together with aqueous NaCl : organic mixtures. Effective separation was most often achieved when using 90% acetonitrile : 10% 20 mM NaCl (aq) w/v, which gives scope for scaling up to incorporate the use of HPLC. The overall most efficient (i.e. fastest) separation was generally achieved where the cellulose column was packed with 20 mM NaCl (aq) and the column first eluted with 100% acetonitrile, then with 75% ethanol : 25% 20 mM NaCl (aq) until the M enantiomer had fully eluted and finally with 90% acetonitrile : 10% 20 mM NaCl (aq) until the P enantiomer had been collected. The sequence of eluents ensured minimum NaCl accompanying the enantiomers and minimum total solvent being required to elute the enantiomers, especially the second one, from the column. No helicate with a methyl group on the imine bond could be resolved and methyl groups on the pyridine rings also have an adverse effect on resolution.  相似文献   

18.
In this paper the elution order reversal of enantiomers of fluorenylmethoxycarbonyl- or FMOC-isoleucine is described depending on the separation temperature and composition of the mobile phase when using the polysaccharide-based chiral column Lux Cellulose-1 in HPLC with normal-phase eluent. Reversal of the enantiomer elution order (EEO) in HPLC depending on the column temperature and content of the polar modifier in the mobile phase has been reported before in the literature. However, EEO reversal by changing the content of acidic modifier in the mobile phase seems to be described for the first time in the present work.  相似文献   

19.
Summary The chromatographic separation and resolution of the enantiomers of flurbiprofen and its two major metabolites, 4′-hydroxyflurbiprofen and 3′-hydroxy-4′-methoxyflurbiprofen was investigated using four different approaches: reversed-phase HPLC after pre-column derivatization with (R)-1-(naphthen-1-yl)ethylamine; reversed-phase HPLC using hydroxypropyl-β-cyclodextrin as a chiral mobile phase additive; chiral-phase HPLC using either an α1-acid glycoprotein CSP (Chiral-AGP) or an amylose tris(3,5-dimethylphenylcarbamate) CSP (Chiralpak AD). Of all the approaches, only the direct method using the Chiralpak AD CSP demonstrated separation and enantiomeric resolution of all three analytes within an acceptable run time of 45 minutes. Enantiomeric resolution values of 1.67,3.67 and 3.44 were obtained for flurbiprofen, 4′-hydroxyflurbiprofen and 3′-hydroxy-4′-methoxyflurbiprofen respectively. Semi-preparative isolation of the individual enantiomers of both metabolites, followed by CD analysis, revealed that the elution order on the AD CSP wasR-beforeS-enantiomer for both metabolites and the same as that observed for flurbiprofen. The metabolite elution order was subsequently confirmed on the analysis of urine samples obtained from a healthy volunteer following oral administration of the individual drug enantiomers.  相似文献   

20.
In this work a chiral stationary phase was prepared by dynamically coating a monolithic reversed-phase HPLC column with a vancomycin-derivative as chiral selector. A hydrophobic alkyl-chain was attached to the vancomycin molecule, providing the immobilization of the chiral selector on the reversed-phase material. Dansyl amino acids were chosen as model analytes for testing the separation power of the dynamically coated phase. All investigated compounds were separated into their enantiomers. Compared with a conventionally packed vancomycin-CSP, a reversal of the enantiomer elution order was obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号