首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The lutidine derivative (2,6-Me(2))(4-Bpin)C(5)H(2)N when combined with B(C(6)F(5))(3) yields a frustrated Lewis pair (FLP) which reacts with H(2) to give the salt [(2,6-Me(2))(4-Bpin)C(5)H(2)NH][HB(C(6)F(5))(3)] (1). Similarly 2,2'-(C(5)H(2)(4,6-Me(2))N)(2) and (4,4'-(C(5)H(2)(4,6-Me(2))N)(2) were also combined with B(C(6)F(5))(3) and exposed to H(2) to give [(2,2'-HN(2,6-Me(2))C(5)H(2)C(5)H(2)(4,6-Me(2))N][HB(C(6)F(5))(3)] (2) and [(4,4'-HN(2,6-Me(2))C(5)H(2)C(5)H(2)(2,6-Me(2))N] [HB(C(6)F(5))(3)] (3), respectively. The mono-pyridine-N-oxide 4,4'-N(2,6-Me(2))C(5)H(2)C(5)H(2)(2,6-Me(2))NO formed the adduct (4,4'-N(2,6-Me(2))C(5)H(2)C(5)H(2)(2,6-Me(2))NO)(B(C(6)F(5))(3)) (4) which reacts further with B(C(6)F(5))(3) and H(2) to give [(4,4'-HN(2,6-Me(2))C(5)H(2)C(5)H(2)(2,6-Me(2))NO)B(C(6)F(5))(3)] [HB(C(6)F(5))(3)] (5). In a related sense, 2-amino-6-CF(3)-C(5)H(3)N reacts with B(C(6)F(5))(3) to give (C(5)H(3)(6-CF(3))NH)(2-NH(B(C(6)F(5))(3))) (6). Similarly, the species, 2-amino-quinoline, 8-amino-quinoline and 2-hydroxy-6-methyl-pyridine were reacted with B(C(6)F(5))(3) to give the products as (C(9)H(6)NH)(2-NHB(C(6)F(5))(3)) (7), (C(9)H(6)N)(8-NH(2)B(C(6)F(5))(3)) (8) and (C(5)H(3)(6-Me)NH)(2-OB(C(6)F(5))(3)) (9), respectively; while 2-amino-6-picoline, 2-amino-6-CF(3)-pyridine, 2-amino-quinoline, 8-amino-quinoline and 2-hydroxy-6-methyl-pyridine react with ClB(C(6)F(5))(2) to give the species (C(5)H(3)(6-R)NH)(2-NH(ClB(C(6)F(5))(2))) (R = Me (10), R = CF(3) (11)) (C(9)H(6)NH)(2-NH(ClB(C(6)F(5))(2))) (12), (C(9)H(6)N)(8-NH(2)ClB(C(6)F(5))(2)) (13) and (C(5)H(3)(6-Me)NH)(2-OClB(C(6)F(5))(2)) (14), respectively. In a similar manner, 2-amino-6-picoline and 2-amino-quinoline react with B(C(6)F(5))(2)H to give (C(5)H(3)(6-Me)NH)(2-NH(HB(C(6)F(5))(2))) (15) and (C(9)H(6)NH)(2-NH(HB(C(6)F(5))(2))) (16). The corresponding reaction of 8-amino-quinoline yields (C(9)H(6)N)(8-NHB(C(6)F(5))(2)) (17). In a similar fashion, reaction of 2-amino-6-CF(3)-pyridine resulted in the formation of (18) formulated as (C(5)H(3)(6-CF(3))N)(2-NH(B(C(6)F(5))(2)). Finally, treatment of 15 with iPrMgCl gave (C(9)H(6)N)(2-NH(B(C(6)F(5))(2))) (19). Crystallographic studies of 1, 2, 4, 6, 7, 10, 11, 12 and 15 are reported.  相似文献   

2.
The Lewis acid cyclohexylbis(pentafluorophenyl)boron 1, which exhibits about 15% lower Lewis acidity in comparison with B(C(6)F(5))(3), activates H(2) in the presence of the bulky Lewis bases 2,2,6,6-tetramethylpiperidine (TMP), 1,2,2,6,6-pentamethylpiperidine (PMP), tri-tert-butylphosphine (t-Bu(3)P) leading in facile reactions at room temperature to heterolytic splitting of dihydrogen and formation of the salts [TMPH][CyBH(C(6)F(5))(2)] 2, [PMPH][CyBH(C(6)F(5))(2)] 3 and [t-Bu(3)PH][CyBH(C(6)F(5))(2)] 4, which could be dehydrogenated at higher temperatures. The related Lewis acid 1-phenyl-2-[bis(pentafluorophenyl)boryl]ethane 5 exhibiting about 10% lower Lewis acidity than B(C(6)F(5))(3) is also capable of splitting H(2) in a heterolytic fashion in the presence of TMP, PMP and t-Bu(3)P yielding [TMPH][PhC(2)H(4)BH(C(6)F(5))(2)] 6, [PMPH][PhC(2)H(4)BH(C(6)F(5))(2)] 7 and [t-Bu(3)PH][PhC(2)H(4)BH(C(6)F(5))(2)] 8. Under comparable conditions as for 2-4, the dehydrogenations of 6-8 were much slower. 4b and 6 were characterized by single crystal X-ray diffraction studies.  相似文献   

3.
The cationic zirconocene-phosphinoaryloxide complexes [Cp(2)ZrOC(6)H(4)P(t-Bu)(2)][B(C(6)F(5))(4)] (3) and [Cp*(2)ZrOC(6)H(4)P(t-Bu)(2)][B(C(6)F(5))(4)] (4) were synthesized by the reaction of Cp(2)ZrMe(2) or Cp*(2)ZrMe(2) with 2-(diphenylphosphino)phenol followed by protonation with [2,6-di-tert-butylpyridinium][B(C(6)F(5))(4)]. Compound 3 exhibits a Zr-P bond, whereas the bulkier Cp* derivative 4 was isolated as a chlorobenzene adduct without this Zr-P interaction. These compounds can be described as transition-metal-containing versions of linked frustrated Lewis pairs (FLPs), and treatment of 4 with H(2) under mild conditions cleaved H(2) in a fashion analogous to that for main-group FLPs. Their reactivity in amine borane dehydrogenation also mimics that of main-group FLPs, and they dehydrogenate a range of amine borane adducts. However, in contrast to main-group FLPs, 3 and 4 achieve this transformation in a catalytic rather than stoichiometric sense, with rates superior to those for previous high-valent catalysts.  相似文献   

4.
The THF-free scandium dialkyl complex LSc(CH(2)SiMe(3))(2) (L = (2,6-iPr(2)C(6)H(3))NC(Me)CHPPh(2)N(2,6-Me(2)C(6)H(3))) bearing the phosphinimino-amine ligand was prepared, which under the activation of [Ph(3)C][B(C(6)F(5))(4)] initiated the polymerization of ethylene with high activity.  相似文献   

5.
Treatment of Me(2)S·B(C(6)F(5))(n) H(3-n) (n=1 or 2) with ammonia yields the corresponding adducts. H(3)N·B(C(6)F(5))H(2) dimerises in the solid state through N-H···H-B dihydrogen interactions. The adducts can be deprotonated to give lithium amidoboranes Li[NH(2)B(C(6)F(5))(n)H(3-n)]. Reaction of the n=2 reagent with [Cp(2)ZrCl(2)] leads to disubstitution, but [Cp(2)Zr{NH(2)B(C(6)F(5))(2)H}(2)] is in equilibrium with the product of β-hydride elimination [Cp(2)Zr(H){NH(2)B(C(6)F(5))(2)H}], which proves to be the major isolated solid. The analogous reaction with [Cp(2)HfCl(2)] gives a mixture of [Cp(2)Hf{NH(2)B(C(6)F(5))(2)H}(2)] and the N-H activation product [Cp(2)Hf{NHB(C(6)F(5 )(2)H}]. [Cp(2)Zr{NH(2)B(C(6)F(5))(2)H}(2)]·PhMe and [Cp(2)Hf{NH(2)B(C(6)F(5))(2)H}(2)]·4(thf) exhibit β-B-agostic chelate bonding of one of the two amidoborane ligands in the solid state. The agostic hydride is invariably coordinated to the outside of the metallocene wedge. Exceptionally, [Cp(2)Hf{NH(2)B(C(6)F(5))(2)H}(2)]?PhMe has a structure in which the two amidoborane ligands adopt an intermediate coordination mode, in which neither is definitively agostic. [Cp(2)Hf{NHB(C(6)F(5))(2)H}] has a formally dianionic imidoborane ligand chelating through an agostic interaction, but the bond-length distribution suggests a contribution from a zwitterionic amidoborane resonance structure. Treatment of the zwitterions [Cp(2)MMe(μ-Me)B(C(6)F(5))(3)] (M=Zr, Hf) with Li[NH(2)B(C(6)F(5))(n)H(3-n)] (n=2) results in [Cp(2) MMe{NH(2)B(C(6)F(5))(2)H}] complexes, for which the spectroscopic data, particularly (1)J(B,H), again suggest β-B-agostic interactions. The reactions proceed similarly for the structurally encumbered [Cp'(2)ZrMe(μ-Me)B(C(6)F(5))(3)] precursor (Cp'=1,3-C(5)H(3)(SiMe(3))(2) , n=1 or 2) to give [Cp'(2)ZrMe{NH(2)B(C(6)F(5))(n)H(3-n)}], both of which have been structurally characterised and show chelating, agostic amidoborane coordination. In contrast, the analogous hafnium chemistry leads to the recovery of [Cp'(2)HfMe(2)] and the formation of Li[HB(C(6)F(5))(3)] through hydride abstraction.  相似文献   

6.
A family of rare earth metal bis(amide) complexes bearing monoanionic amidinate [RC(N-2,6-Me(2)C(6)H(3))(2)](-) (R = cyclohexyl (Cy), phenyl (Ph)) as ancillary ligands were synthesized and characterized. One-pot salt metathesis reaction of anhydrous LnCl(3) with one equivalent of amidinate lithium [RC(N-2,6-Me(2)C(6)H(3))(2)]Li, following the introduction of two equivalents of NaN(SiMe(3))(2) in THF at room temperature afforded the neutral and unsolvated mono(amidinate) rare earth metal bis(amide) complexes [RC(N-2,6-Me(2)C(6)H(3))(2)]Y[N(SiMe(3))(2)](2) (R = Cy (1); R = Ph (2)), and the "ate" mono(amidinate) rare earth metal bis(amide) complex [CyC(N-2,6-Me(2)C(6)H(3))(2)]Lu[N(SiMe(3))(2)](2)(μ-Cl)Li(THF)(3) (3) in 61-72% isolated yields. These complexes were characterized by elemental analysis, NMR spectroscopy, FT-IR spectroscopy, and X-ray single crystal diffraction. Single crystal structural determination revealed that the central metal in complexes 1 and 2 adopts a distorted tetrahedral geometry, and in complex 3 forms a distorted trigonal bipyramidal geometry. In the presence of AlMe(3), and in combination with one equimolar amount of [Ph(3)C][B(C(6)F(5))(4)], complexes 1 and 2 showed high activity towards isoprene polymerization to give high molecular weight polyisoprene (M(n) > 10(4)) with good cis-1,4 selectivity (>90%).  相似文献   

7.
The species Cy(2)PHC(6)F(4)BF(C(6)F(5))(2) reacts with Pt(PPh(3))(4) to yield the new product cis-(PPh(3))(2)PtH(Cy(2)PC(6)F(4)BF(C(6)F(5))(2)) 1 via oxidative addition of the P-H bond of the phosphonium borate to Pt(0). The corresponding reaction with Pd(PPh(3))(4) affords the Pd analogue of 1, namely, cis-(PPh(3))(2)PdH(Cy(2)PC(6)F(4)BF(C(6)F(5))(2)) 3; while modification of the phosphonium borate gave the salt [(PPh(3))(3)PtH][(tBu(2)PC(6)F(4)BF(C(6)F(5))(2))] 2. Alternatively initial deprotonation of the phosphonium borate gave [tBu(3)PH][Cy(2)PC(6)F(4)BF(C(6)F(5))(2)] 4, [SIMesH][Cy(2)PC(6)F(4)BF(C(6)F(5))(2)] 5 which reacted with NiCl(2)(DME) yielding [BaseH](2)[trans-Cl(2)Ni(Cy(2)PC(6)F(4)BF(C(6)F(5))(2))(2)] (Base = tBu(3)P 6, SIMes 7) or with PdCl(2)(PhCN)(2) to give [BaseH](2)[trans-Cl(2)Pd(Cy(2)PC(6)F(4)BF(C(6)F(5))(2))(2)] (Base = tBu(3)P 8, SIMes 9). While [C(10)H(6)N(2)(Me)(4)H][tBu(2)PC(6)F(4)BF(C(6)F(5))(2)] 10 was also prepared. A third strategy for formation of a metal complex of anionic phosphine-borate derivatives was demonstrated in the reaction of (COD)PtMe(2) with the neutral phosphine-borane Mes(2)PC(6)F(4)B(C(6)F(5))(2) affording (COD)PtMe(Mes(2)PC(6)F(4)BMe(C(6)F(5))(2)) 11. Extension of this reactivity to tBu(2)PH(CH(2))(4)OB(C(6)F(5))(3)) was demonstrated in the reaction with Pt(PPh(3))(4) which yielded cis-(PPh(3))(2)PtH(tBu(2)P(CH(2))(4)OB(C(6)F(5))(3)) 12, while the reaction of [SIMesH][tBu(2)P(CH(2))(4)OB(C(6)F(5))(3)] 13 with NiCl(2)(DME) and PdCl(2)(PhCN)(2) afforded the complexes [SIMesH](2)[trans-Cl(2)Ni(tBu(2)PC(4)H(8)OB(C(6)F(5))(3))(2)] 14 and [SIMesH](2)[trans-PdCl(2)(tBu(2)P(CH(2))(4)OB(C(6)F(5))(3))(2)] 15, respectively, analogous to those prepared with 4 and 5. Finally, the reaction of 7 and 13with [(p-cymene)RuCl(2)](2) proceeds to give the new orange products [SIMesH][(p-cymene)RuCl(2)(Cy(2)PC(6)F(4)BF(C(6)F(5))(2))] 16 and [SIMesH][(p-cymene)RuCl(2)(tBu(2)P(CH(2))(4)OB(C(6)F(5))(3))] 17, respectively. Crystal structures of 1, 6, 10, 11, 12, and 16 are reported.  相似文献   

8.
While B(C(6)F(5))(3) forms the adducts (CH(2))(4)CO(2)B(C(6)F(5))(3)1 and (CHMeCO(2))(2)B(C(6)F(5))(3)7 with δ-valerolactone and lactide, the frustrated Lewis pairs derived from B(C(6)F(5))(3) and phosphine or N-bases react with lactone to effect ring opening affording zwitterionic species of the form L(CH(2))(4)CO(2)B(C(6)F(5))(3) (L = tBu(3)P 2, Cy(3)P 3, C(5)H(3)Me(3)N 4, PhNMe(2) 5, C(5)H(6)Me(4)NH 6) while reaction with rac-lactide results in ring contraction to give salts [LH][OCCHMeCO(2)(CMe)OB(C(6)F(5))(3)] (L = tBu(3)P 8, Cy(3)P 9, C(5)H(3)Me(2)N 10, C(5)H(6)Me(4)NH 11). The mechanistic implications of these reactions are discussed.  相似文献   

9.
Reactions of β-diketiminato group 2 silylamides, [HC{(Me)CN(2,6-(i)Pr(2)C(6)H(3))}(2)M(THF)(n){N(SiMe(3))(2)}] (M = Mg, n = 0; M = Ca, Sr, n = 1), and an equimolar quantity of pyrrolidine borane, (CH(2))(4)NH·BH(3), were found to produce amidoborane derivatives of the form [HC{(Me)CN(2,6-(i)Pr(2)C(6)H(3))}(2)MN(CH(2))(4)·BH(3)]. In reactivity reminiscent of analogous reactions performed with dimethylamine borane, addition of a second equivalent of (CH(2))(4)NH·BH(3) to the Mg derivative induced the formation of a species, [HC{(Me)CN(2,6-(i)Pr(2)C(6)H(3))}(2)Mg{N(CH(2))(4) BH(2)NMe(2)BH(3)}], containing an anion in which two molecules of the amine borane substrate have been coupled together through the elimination of one molecule of H(2). Both this species and a calcium amidoborane derivative have been characterised by X-ray diffraction techniques and the coupled species is proposed as a key intermediate in catalytic amine borane dehydrocoupling, in reactivity dictated by the charge density of the group 2 centre involved. On the basis of further stoichiometric reactions of the homoleptic group 2 silylamides, [M{N(SiMe(3))(2)}(2)] (M = Mg, Ca, Sr, Ba), with (CH(3))(2)NH·BH(3) and (i)Pr(2)NH·BH(3) reactivity consistent with successive amidoborane β-hydride elimination and [R(2)N[double bond, length as m-dash]BH(2)] insertion is described as a means to induce the B-N dehydrocoupling between amine borane substrates.  相似文献   

10.
Tris[3,5-bis(trifluoromethyl)phenyl]borane (1, BArF(18)), has been synthesised on a practical scale for the first time. According to the Gutmann-Beckett method it is a more powerful Lewis acid than B(C(6)F(5))(3). It forms a 'frustrated Lewis pair' with 2,2,6,6-tetramethylpiperidine which cleaves H(2) to form a salt containing the novel anion [μ-H(BArF(18))(2)](-).  相似文献   

11.
Hydroboration of the electron poor phosphine (1-propenyl)P(C(6)F(5))(2) with Piers' borane [HB(C(6)F(5))(2)] gave the geminal frustrated Lewis pair (C(6)F(5))(2)P-CH(Et)-B(C(6)F(5))(2). It undergoes 1,2-addition reactions to an alkene and an alkyne and to the C=N bond of an isocyanate. With mesityl azide it undergoes a 1,3-addition reaction.  相似文献   

12.
Treatment of the tris(pyrazolyl)borate metal triamides Tp'M(NMe(2))(3), where Tp' = (C(3)H(3)N(2))(3)BH (Tp) or (3,5-Me(2)C(3)HN(2))(3)BH (Tp*) and M = Ti, Zr and Hf, with the Br?nsted acidic Lewis adduct (C(6)F(5))(3)B·NH(3) in toluene solution leads to the formation of Tp'M(NMe(2))(2){NH(2)B(C(6)F(5))(3)} complexes. The exception to this was the attempted preparation of Tp*Ti(NMe(2))(2){NH(2)B(C(6)F(5))(3)} which was unsuccessful. Where Tp' = Tp and M = Ti and Zr and where Tp' = Tp* and M = Zr the complexes have been characterized by single crystal X-ray diffraction methods, revealing the first examples of octahedral amidoborane complexes of the group 4 metals. Attempts to drive the reactions to completion resulted in competing preferential hydrolysis of the amidoborane group, regenerating (C(6)F(5))(3)B·NH(3).  相似文献   

13.
Treating a thf (thf = tetrahydrofuran) suspension of Cd(acac)(2) (acac = acetylacetonate) with 2 equiv of HBF(4).Et(2)O results in the immediate formation of [Cd(2)(thf)(5)](BF(4))(4) (1). Crystallization of this complex from thf/CH(2)Cl(2) yields [Cd(thf)(4)](BF(4))(2) (2), a complex characterized in the solid state by X-ray crystallography. Crystal data: monoclinic, P2(1)/n, a = 7.784(2) ?, b = 10.408(2) ?, c = 14.632(7) ?, beta = 94.64(3) degrees, V = 1181.5(6) ?(3), Z = 2, R = 0.0484. The geometry about the cadmium is octahedral with a square planar arrangement of the thf ligands and a fluorine from each (BF(4))(-) occupying the remaining two octahedral sites. Reactions of [Cd(2)(thf)(5)](BF(4))(4) with either HC(3,5-Me(2)pz)(3) or HC(3-Phpz)(3) yield the dicationic, homoleptic compounds {[HC(3,5-Me(2)pz)(3)](2)Cd}(BF(4))(2) (3) and {[HC(3-Phpz)(3)](2)Cd}(BF(4))(2) (4) (pz = 1-pyrazolyl). The solid state structure of 3 has been determined by X-ray crystallography. Crystal data: rhombohedral, R&thremacr;, a = 12.236(8) ?, c = 22.69(3) ?, V = 2924(4) ?(3), Z = 3, R = 0.0548. The cadmium is bonded to the six nitrogen donor atoms in a trigonally distorted octahedral arrangement. Four monocationic, mixed ligand tris(pyrazolyl)methane-tris(pyrazolyl)borate complexes {[HC(3,5-Me(2)pz)(3)][HB(3,5-Me(2)pz)(3)]Cd}(BF(4)) (5), {[HC(3,5-Me(2)pz)(3)][HB(3-Phpz)(3)]Cd}(BF(4)) (6), {[HC(3-Phpz)(3)][HB(3,5-Me(2)pz)(3)]Cd}(BF(4)) (7), and {[HC(3-Phpz)(3)][HB(3-Phpz)(3)]Cd}(BF(4)) (8) are prepared by appropriate conproportionation reactions of 3or 4 with equimolar amounts of the appropriate homoleptic neutral tris(pyrazolyl)borate complexes [HB(3,5-Me(2)pz)(3)](2)Cd or [HB(3-Phpz)(3)](2)Cd. Solution (113)Cd NMR studies on complexes 3-8 demonstrate that the chemical shifts of the new cationic, tris(pyrazolyl)methane complexes are very similar to the neutral tris(pyrazolyl)borate complexes that contain similar substitution of the pyrazolyl rings.  相似文献   

14.
The bis-borane 1,2-C(6)H(4)(BCl(2))(2) forms an adduct with PtBu(3), but is still capable of exhibiting FLP reactivity with THF and CO(2). The resulting CO(2) species is reduced by Me(2)NHBH(3) or [C(5)H(6)Me(4)NH(2)]X (X = [HB(C(6)F(5))(3)], [HB(C(6)F(5))(2)(C(7)H(11))]) followed by quenching with water to effect the stoichiometric conversion of CO(2) to methanol.  相似文献   

15.
The synthesis and reactivity of [Tp*Zr(CH2Ph)2][B(C6F5)4] (2, Tp* = HB(3,5-Me2pz)3, pz = pyrazolyl) have been explored to probe the possible role of Tp'MR2+ species in group 4 metal Tp'MCl3/MAO olefin polymerization catalysts (Tp' = generic tris(pyrazolyl)borate). The reaction of Tp*Zr(CH2Ph)3 (1) with [Ph3C][B(C6F5)4] in CD2Cl2 at -60 degrees C yields 2. 2 rearranges rapidly to [{(PhCH2)(H)B(mu-Me2pz)2}Zr(eta2-Me2pz)(CH2Ph)][B(C6F5)4] (3) at 0 degrees C. Both 2 and 3 are highly active for ethylene polymerization and alkyne insertion. Reaction of 2 with excess 2-butyne yields the double insertion product [Tp*Zr(CH2Ph)(CMe=CMeCMe=CMeCH2Ph)][B(C6F5)4] (4). Reaction of 3 with excess 2-butyne yields [{(PhCH2)(H)B(mu-Me2pz)2}Zr(Cp*)(eta2-Me2pz)][B(C6F5)4] (6, Cp* = C5Me5) via three successive 2-butyne insertions, intramolecular insertion, chain walking, and beta-Cp* elimination.  相似文献   

16.
The photochemical treatment of mu(3)-alkylidyne complexes [[TiCp*(mu-O)](3)(mu(3)-CR)] (R=H (1), Me (2), Cp*=eta(5)-C(5)Me(5)) with the amines (2,6-Me(2)C(6)H(3))NH(2), Et(2)NH, and Ph(2)NH and the imine Ph(2)C=NH leads to the partial hydrogenation of the alkylidyne moiety that is supported on the organometallic oxide, [Ti(3)Cp*O(3)], and the formation of new oxoderivatives [[TiCp*(3)(mu-CHR)(R'NR")] (R"=2,6-Me(2)C(6)H(3), R'=H, R=H (3), Me (4); R'=R"=Et, R=H (5), Me (6); R'=R"=Ph, R=H (7), Me (8)) and [[TiCp*(mu-O)](3)(mu-CHR)(N=CPh(2))] (R=H (9), R=Me (10)), respectively. A sequential transfer hydrogenation process occurs when complex 1 is treated with tBuNH(2), which initially gives the mu-methylene [[TiCp*(mu-O)](3)(mu-CH(2))(HNtBu)] (11) complex and finally, the alkyl derivative [[TiCp*(mu-O)](3)(mu-NtBu)Me] (12). Furthermore, irradiation of solutions of the mu(3)-alkylidyne complexes 1 or 2 in the presence of diamines o-C(6)H(4)(NH(2))(2) and H(2)NCH(2)CH(2)NH(2) (en) affords [[TiCp*(mu-O)](3)(mu(3)-eta(2)-NC(6)H(4)NH)] (13) and [[TiCp*(mu-O)](3)(mu(3)-eta(2)-NC(2)H(4)NH)] (14) by either methane or ethane elimination, respectively. In the reaction of 1 with en, an intermediate complex [[TiCp*(mu-O)](3)(mu-CH(2))(NHCH(2)CH(2)NH(2))] (15) is detected by (1)H NMR spectroscopy. Thermal treatment of the complexes 4-10 quantitatively regenerates the starting mu(3)-alkylidyne compounds and the amine R'(2)NH or the imine Ph(2)C=NH; however, heating of solutions of 3 or 4 in [D(6)]benzene or a equimolecular mixture of both at 170 degrees C produces methane, ethane, or both, and the complex [[TiCp*(mu-O)](3)[mu(3)-eta(2)-NC(6)H(3)(Me)CH(2)]] (16). The molecular structure of 8 has been established by single-crystal X-ray analysis.  相似文献   

17.
The phosphinoboranes [R(2)PB(C(6)F(5))(2)](2) (R = Et 1, Ph 2) and R(2)PB(C(6)F(5))(2) (R = tBu 3, Cy 4, Mes 5) were synthesized from the reaction of (C(6)F(5))(2)BCl and the corresponding lithium phosphide. The relationships between B-P distance, P pyramidality, and the extent of BP multiple bonding were further explored computationally. Natural Bond Order (NBO) analyses of 3 and 4 showed that the π-bonding highest occupied molecular orbitals (HOMOs) were highly polarized. In addition the Lewis acid-base adducts, R(2)(H)P·B(H)(C(6)F(5))(2) (R = Et 6; Ph 7; tBu 8; Cy 9; Mes 10) were prepared via the reaction of the phosphines R(2)PH with the borane HB(C(6)F(5))(2). Compounds 1 and 2 showed no signs of reaction with H(2); however, reaction of compounds 3 and 4 with H(2) was observed to give 8 and 9. In a related set of reactions compounds 3 and 4 were reacted with H(3)NBH(3) or Me(2)(H)NBH(3) also led to the generation of 8 and 9, respectively. The reaction profile of the reaction of (CF(3))(2)BPR(2) with H(2) was examined computationally and shown to be exothermic. Efforts to effect the reverse reaction, that is, dehydrogenation of adducts 6-10 were unsuccessful. Compound 4 was also shown to react with 4-tert-butylpyridine to give Cy(2)PB(C(6)F(5))(2)(4-tBuC(5)H(4)N) 11 while reactions of 3 and 4 with the Lewis acid BCl(3) gave the dimers (R(2)PBCl(2))(2) (R = tBu 12, Cy 13) and the byproduct ClB(C(6)F(5))(2).  相似文献   

18.
The aryl-substituted N-picolylethylenediamine and diethylenetriamine ligands, (ArNHCH(2)CH(2))[(2-C(5)H(4)N)CH(2)]NH and (ArNHCH(2)CH(2))(2)NH (Ar = 2,6-Me(2)C(6)H(3), 2,4,6-Me(3)C(6)H(2)), have been prepared by employing palladium-catalysed N-C(aryl) coupling reactions of the corresponding primary amines with aryl bromide. Treatment of MCl(2) with (ArNHCH(2)CH(2))[(2-C(5)H(4)N)CH(2)]NH affords [[(ArNHCH(2)CH(2))((2-C(5)H(4)N)CH(2))NH]CoCl(2)](Ar = 2,6-Me(2)C(6)H(3) 1a; 2,4,6-Me(3)C(6)H(2)) 1b and [[(ArNHCH(2)CH(2))((2-C(5)H(4)N)CH(2))NH]FeCl(2)](n)(n= 1, Ar = 2,6-Me(2)C(6)H(3) 2a; n= 2, 2,4,6-Me(3)C(6)H(2) 2b) in high yield. The X-ray structures of 1a and 1b are isostructural and reveal the metal centres to adopt distorted trigonal bipyramidal geometries with the N,N,N-chelates adopting fac-structures. A facial coordination mode of the ligand is also observed in bimetallic 2b, however, in 2a the N,N,N-chelate adopts a mer-configuration with the metal centre adopting a geometry best described as square pyramidal. Solution studies indicate that mer-fac isomerisation is a facile process for these systems at room temperature. Quantum mechanical calculations (DFT) have been performed on 1a and 2a, in which the ligands employed are identical, and show the fac- to be marginally more stable than the mer-configuration for cobalt (1a) while for iron (2a) the converse is evident. Reaction of (ArNHCH(2)CH(2))(2)NH with CoCl(2) gave the five-coordinate complexes [[(ArNHCH(2)CH(2))(2)NH]CoCl(2)](Ar = 2,6-Me(2)C(6)H(3) 3a, 2,4,6-Me(3)C(6)H(2) 3b), in which the ligand adopts a mer-configuration; no reaction occurred with FeCl(2). All complexes 1-3 act as modest ethylene oligomerisation catalysts on activation with excess methylaluminoxane (MAO); the iron systems giving linear alpha-olefins while the cobalt systems give mixtures of linear and branched products.  相似文献   

19.
Catechol borane reacts with the frustrated Lewis pairs tBu2RP (R = tBu, 2-C6H4(C6H5)) and B(C6F5)3 to give the species [(C6H4O2)BPtBu2R][HB(C6F5)3] that can formally be described as either borenium cation or boryl-phosphonium salts; the nature of these species was probed with DFT calculations.  相似文献   

20.
Treatment of the borane Br 2BFc (Fc = ferrocenyl) with the Lewis base 4-methylpyridine and Na[BAr (f) 4] [Ar (f) = 3,5-(CF 3) 2C 6H 3] afforded the boron dication [FcB(NC 5H 4-4-Me) 3][BAr (f) 4] 2. This compound is a rare example of a structurally characterized boron dication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号