首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rh/L和Rh-Zn/L分子筛催化剂上乙烯的氢甲酰化反应   总被引:2,自引:0,他引:2  
Rh/L和Rh-Zn/L分子筛催化剂上乙烯的氢甲酰化反应董永治,徐奕德,刘安明,李大明,黄林(中国科学院大连化学物理研究所催化基础国家重点实验室,大连116023)关键词Rh/L分子筛催化剂,Rh-Zn/L分子筛催化剂,氢甲酰化反应,乙烯近年来,氢甲...  相似文献   

2.
We have carried out extensive density functional theory (DFT) calculations for possible redox states of the active center in Fe-only hydrogenases. The active center is modeled by [(H(CH(3))S)(CO)(CN(-))Fe(p)(mu-DTN)(mu-CO)Fe(d)(CO)(CN(-))(L)](z)() (z is the net charge in the complex; Fe(p)= the proximal Fe, Fe(d) = the distal Fe, DTN = (-SCH(2)NHCH(2)S-), L is the ligand that bonds with the Fe(d) at the trans position to the bridging CO). Structures of possible redox states are optimized, and CO stretching frequencies are calculated. By a detailed comparison of all the calculated structures and the vibrational frequencies with the available experimental data, we find that (i) the fully oxidized, inactive state is an Fe(II)-Fe(II) state with a hydroxyl (OH(-)) group bonded at the Fe(d), (ii) the oxidized, active state is an Fe(II)-Fe(I) complex which is consistent with the assignment of Cao and Hall (J. Am. Chem. Soc. 2001, 123, 3734), and (iii) the fully reduced state is a mixture with the major component being a protonated Fe(I)-Fe(I) complex and the other component being its self-arranged form, Fe(II)-Fe(II) hydride. Our calculations also show that the exogenous CO can strongly bond with the Fe(II)-Fe(I) species, but cannot bond with the Fe(I)-Fe(I) complex. This result is consistent with experiments that CO tends to inhibit the oxidized, active state, but not the fully reduced state. The electronic structures of all the redox states have been analyzed. It is found that a frontier orbital which is a mixing state between the e(g) of Fe and the 2 pi of the bridging CO plays a key role concerning the reactivity of Fe-only hydrogenases: (i) it is unoccupied in the fully oxidized, inactive state, half-occupied in the oxidized, active state, and fully occupied in the fully reduced state; (ii) the e(g)-2 pi orbital is a bonding state, and this is the key reason for stability of the low oxidation states, such as Fe(I)-Fe(I) complexes; and (iii) in the e(g)-2 pi orbital more charge accumulates between the bridging CO and the Fe(d) than between the bridging CO and the Fe(p), and the occupation increase in this orbital will enhance the bonding between the bridging CO and the Fe(d), leading to the bridging-CO shift toward the Fe(d).  相似文献   

3.
The adsorption and dissociation of carbon monoxide on the W(111) surface is studied with density functional theory. The CO molecule is found to adsorb in end-on configurations (alpha states) and inclined configurations (beta states). The dissociation of the most strongly bound beta state CO is found to have an activation energy of about 0.8 eV, which is lower than the energy required to desorb CO molecularly from the surface. The diffusion of CO and O on W(111) is predicted to be facile at room temperature, whereas C atoms are virtually immobile up to approximately 600 K, according to our calculations. Preadsorbed carbon atoms are shown to prevent the dissociation of CO by blocking the most strongly bound beta state adsorption site and by blocking the dissociation pathway. We predict that dissociation of CO on W(111) is a self-poisoning process.  相似文献   

4.
Active surfaces for CO oxidation on palladium in the hyperactive state   总被引:1,自引:0,他引:1  
Hyperactivity was previously observed for CO oxidation over palladium, rhodium, and platinum surfaces under oxygen-rich conditions, characterized by reaction rates 2-3 orders higher than those observed under stoichiometric reaction conditions [Chen et al. Surf. Sci. 2007, 601, 5326]. In the present study, the formation of large amounts of CO(2) and the depletion of CO at the hyperactive state on both Pd(100) and polycrystalline Pd foil were evidenced by the infrared intensities of the gas phase CO(2) and CO, respectively. The active surfaces at the hyperactive state for palladium were characterized using infrared reflection absorption spectroscopy (IRAS, 450-4000 cm(-1)) under the realistic catalytic reaction condition. Palladium oxide on a Pd(100) surface was reduced eventually by CO at 450 K, and also under CO oxidation conditions at 450 K. In situ IRAS combined with isotopic (18)O(2) revealed that the active surfaces for CO oxidation on Pd(100) and Pd foil are not a palladium oxide at the hyperactive state and under oxygen-rich reaction conditions. The results demonstrate that a chemisorbed oxygen-rich surface of Pd is the active surface corresponding to the hyperactivity for CO oxidation on Pd. In the hyperactive region, the CO(2) formation rate is limited by the mass transfer of CO to the surface.  相似文献   

5.
We describe a number of studies used to establish that parahydrogen can be used to prepare a two-spin system in a pure state, which is suitable for implementing NMR quantum computation. States are generated by pulsed and continuous-wave (CW) UV laser initiation of a chemical reaction between Ru(CO)(3)(L(2)) [where L(2) = dppe = 1,2-bis(diphenylphosphino)ethane or L(2) = dpae = 1,2-bis(diphenylarsino)ethane] with pure parahydrogen (generated at 18 K). This process forms Ru(CO)(2)(dppe)(H)(2) and Ru(CO)(2)(dpae)(H)(2) on a sub-microsecond time-scale. With the pulsed laser, the spin state of the hydride nuclei in Ru(CO)(2)(dppe)(H)(2) has a purity of 89.8 +/- 2.6% (from 12 measurements). To achieve comparable results by cooling would require a temperature of 6.6 mK, which is unmanageable in the liquid state, or an impractical magnetic field of 0.44 MT at room temperature. In the case of CW initiation, reduced state purities are observed due to natural signal relaxation even when a spin-lock is used to prevent dephasing. When Ru(CO)(3)(dpae) and pulsed laser excitation are utilized, the corresponding dihydride product spin state purity was determined as 106 +/- 4% of the theoretical maximum. In other words, the state prepared using Ru(CO)(3)(dpae) as the precursor is indistinguishable from a pure state.  相似文献   

6.
采用原位时间分辨红外光谱和原位显微Raman光谱技术对Ir/SiO2上甲烷部分氧化(POM)制合成气反应的初级产物和反应条件下催化剂表面物种进行了跟踪考察,实验结果表明,在H2预还原的新鲜Ir/SiO2表面,CO是V(CH4):V(O2):V(Ar)=2:1:45混合气反应的初级产物,因而甲烷的直接氧化过程是CO生成的主要途径;而在稳态反应条件下,CO生成的途径可能主要来自CO2和H2O与催化剂表面积碳物种(CHx)和/或CH4的反应.催化剂上生成的积碳可能是导致稳态条件下Ir/SiO2上POM反应机理不同于H2预还原的新鲜催化剂的主要原因.  相似文献   

7.
The photochemistry of (η(6)-methylbenzoate)Cr(CO)(3), (η(6)-naphthalene)Cr(CO)(3), and (η(6)-phenanthrene)Cr(CO)(3) in n-heptane solution was investigated by picosecond time-resolved infrared spectroscopy (TRIR). The observation of two transient IR features in the organic carbonyl region at 1681 and 1724 cm(-1) following 400 nm excitation of (η(6)-methylbenzoate)Cr(CO)(3) confirms formation of two excited states which are classified as metal-to-arene charge transfer (MACT) and metal-to-CO charge transfer (MCCT), respectively. Time-dependent density functional theory calculations have been used to support these assignments. Population of the MCCT excited state results in a slow (150 ps) expulsion of one CO ligand. Excitation of (η(6)-naphthalene)Cr(CO)(3) or (η(6)-phenanthrene)Cr(CO)(3) at either 400 or 345 nm produced two excited states: the MCCT state results in CO loss, while the MACT excited state results in a change to the coordination mode of the polyaromatic ligands before relaxing to the parent complex. A comparison of the infrared absorptions observed following the population of the MACT excited state with those calculated for nonplanar polyaromatic intermediates provides a model for the reduced hapticity species.  相似文献   

8.
The surface state of Rh/MgO catalysts modified with Co, Ni, Fe, or CeO(2) after the reduction and partial oxidation pretreatments as well as during the catalytic partial oxidation of methane has been investigated by FTIR of adsorbed CO. The results of CO adsorption on the reduced catalysts suggest the formation of Rh-M alloy on Rh-M/MgO (M = Co, Ni, Fe) and Rh particles partially covered with reduced ceria on Rh-CeO(2)/MgO. The strength of CO adsorption on Rh/MgO is weakened by the modification with Co, Ni, Fe, or CeO(2). Partial oxidation pretreatment of Rh/MgO leads to a significant decrease in the CO adsorption due to the oxidation of Rh. In contrast, on partially oxidized Rh-M/MgO (M = Co, Ni, Fe) and Rh-CeO(2)/MgO, the preferential oxidation of the surface M atoms or reduced ceria maintains the metallic Rh and preserves the CO adsorbed on the surface Rh atoms. The CO adsorption during the reaction of catalytic partial oxidation of methane on Rh/MgO and Rh-Ni/MgO is similar to that on the reduced catalysts. On the other hand, the CO adsorption during the reaction on Rh-Co/MgO, Rh-Fe/MgO, and Rh-CeO(2)/MgO is different from that on the reduced catalysts, and this is related to the structural change of these catalysts during the reaction.  相似文献   

9.
A synthetic cycle for the CO(2)-to-CO conversion (with subsequent release of CO) based on iron(II), a redox-active pydridinediimine ligand (PDI), and an O-atom acceptor is reported. This conversion is a passive-type ligand-based reduction, where the electrons for the CO(2) conversion are supplied by the reduced PDI ligand and the ferrous state of the iron is conserved.  相似文献   

10.
Ten new bridged dimers of oxo-centered triruthenium clusters with CO and 4-(dimethylamino)pyridine (dmap), pyridine (py), or 4-cyanopyridine (cpy) as terminal ligands and pyrazine-d(4) (d(4)-pz), 2,5-dimethylpyrazine (dmpz), 2-methylpyrazine (mpz), and 2-chloropyrazine (clpz) as bridging ligands were prepared. The carbonyl stretching frequency, nu(CO), was used as a probe for infrared spectroelectrochemical measurements. In the neutral and doubly reduced states, a single band was observed for each of the dimers, with a shift in frequency due to the oxidation state of the triruthenium clusters. In the singly reduced state, a range of nu(CO) line shapes was observed, depending on the nature of the ligands, from two bands centered at the frequencies of the bands of the neutral and doubly reduced species to one broad band at the average of these two frequencies. By synthesizing new combinations of bridging and ancillary ligands, electronic communication between two bridged triruthenium clusters was effectively tuned, and electron-transfer rates were estimated by IR spectral line-shape analysis. In dimers bridged by the asymmetric ligand mpz, it was possible through selective isotope labeling of one CO ligand to observe "mixed-valence isomers," the two alternate charge distributions of a mixed-valence complex.  相似文献   

11.
This paper reports on extensive molecular dynamics simulations (about 40 ns in total) in both the reduced and the oxidized states of Ferredoxin from Cyanobacterium Anabaena PCC7119. These calculations have provided us with the free energy profile of the phi(47) backbone angle which controls the "CO in" to "CO out" transition of Cys46 in the reduced and oxidized Fd7119. Our main motivation has been to identify the time scales involved in the reduction of Fd and single out the amino acid residues crucially affecting the conformational change and, thus, electron transfer. The free energy profiles obtained in this study are relevant to electron transfers in the PSI/Fd7119 and Fd7119/FNR complexes. Our findings based on hydrated ferredoxin simulations are that activated processes are to occur in the protein during electron transfer to and from ferredoxin. The relative stability and the activation barrier of the "CO in" to "CO out" transition can be modulated by the distance between the Ser47 and the Glu94 residues. In our calculations, for short distances, the "CO in" state is favored in the reduced form, whereas for large distances, the "CO out" state becomes increasingly favored. Accordingly, conformational changes in Fd7119 when bound to PSI or FNR can have crucial effects on the kinetics of the electron transfer. Our simulations also show that the hydrogen bond between between Ser47(OG) and Cys46(O) is essential to lock in the "CO out" state. This finding explains why only the Ser47Thr Fd7119 mutant sustains electron transfer activity, as only residues serine and threonine can form a specific hydrogen bond with Cys46(O). Finally, our simulations predict that Phe65 has a large probability of being in close contact with the Cys46(O) at the top of the conformational free energy barrier. This carbonyl/phenyl ring interaction can then facilitate the de-localization of the Fd's electron toward the Pi orbitals of Phe65 aromatic ring which is thought to be crucial to the Fd7119/FNR electron transfer  相似文献   

12.
To estimate the importance of relativistic effects on the reaction mechanisms between Ru and CO2, the potential energy surfaces have been performed in the triplet and quintet electronic states using quasi-relativistic (Pauli), zero-order regularly approximated (ZORA), and nonrelativistic (NR) density functional theory (DFT) at the PW91/TZP level. The results demonstrate that there are two rival reaction mechanisms: one is an addition mechanism and the other is an insertion mechanism in the triplet state. The only mechanism in the quintet state is the insertion mechanism. The most favored reaction mechanism in Ru + CO2 is that the Ru atom in its ground state first attacks the CO bond of CO2, forming q-Ru(CO)O (5A') with the insertion mechanism, and then undergoes an intersystem crossing to t-Ru(CO)O (3A'). Then it crosses t-TS3 to produce t-ORuCO molecule. The relativistic effects are important for reactivity of the second-row transition metal to CO2. In the key step of t-Ru(CO)O via t-TS3 to t-ORuCO, relativistic effects reduce the barrier energy by 10.3 kcal/mol, which is nearly half the nonrelativistic barrier energy.  相似文献   

13.
研究了钛酸钡和钛酸钙担载的Ag和Pt纳米催化剂的表面结构随氧化-还原处理过程的动态变化及其对CO完全氧化反应性能的影响.发现氧化物担载的Ag催化剂在氧化处理后其催化活性较还原处理的高; X射线衍射(XRD)和X射线光电子能谱(XPS)表征结果表明,氧化处理能够提高载体表面Ag颗粒的分散度,而还原处理导致Ag颗粒的聚集,从而降低了催化氧化CO反应的活性.氧化-还原处理改变了担载Ag纳米粒子的尺寸并影响其CO氧化反应活性.与此相反,氧化物担载的Pt催化剂在还原处理后所表现出的CO氧化反应活性较氧化处理的高; 对比研究发现,氧化和还原处理后Pt纳米粒子的尺寸基本相同,但是氧化处理的样品中Pt表面物种以氧化态为主,而还原处理后Pt表面物种主要为金属态.Pt纳米粒子表面化学状态随氧化-还原处理的调变是导致表面催化活性差异的主要原因.  相似文献   

14.
The lowest absorption band of fac-[Re(Cl)(CO)3(5-NO2-phen)] encompasses two close-lying MLCT transitions. The lower one is directed to LUMO, which is heavily localized on the NO2 group. The UV-vis absorption spectrum is well accounted for by TD-DFT (G03/PBEPBE1/CPCM), provided that the solvent, MeCN, is included in the calculations. Near-UV excitation of fac-[Re(Cl)(CO)3(5-NO2-phen)] populates a triplet metal to ligand charge-transfer excited state, 3MLCT, that was characterized by picosecond time-resolved IR spectroscopy. Large positive shifts of the nu(CO) bands upon excitation (+70 cm(-1) for the A'1 band) signify a very large charge separation between the Re(Cl)(CO)3 unit and the 5-NO2-phen ligand. Details of the excited-state character are revealed by TD-DFT calculated changes of electron density distribution. Experimental excited-state nu(CO) wavenumbers agree well with those calculated by DFT. The 3MLCT state decays with a ca. 10 ps lifetime (in MeCN) into another transient species, that was identified by TRIR and TD-DFT calculations as an intraligand 3npi excited state, whereby the electron density is excited from the NO2 oxygen lone pairs to the pi system of 5-NO2-phen. This state is short-lived, decaying to the ground state with a approximately 30 ps lifetime. The presence of an npi state seems to be the main factor responsible for the lack of emission and the very short lifetimes of 3MLCT states seen in all d6-metal complexes of nitro-polypyridyl ligands. Localization of the excited electron density in the lowest 3MLCT states parallels localization of the extra electron in the reduced state that is characterized by a very small negative shift of the nu(CO) IR bands (-6 cm(-1) for A'1) but a large downward shift of the nu(s)(NO2) IR band. The Re-Cl bond is unusually stable toward reduction, whereas the Cl ligand is readily substituted upon oxidation.  相似文献   

15.
The development of sorbents for next-generation CO(2) mitigation technologies will require better understanding of CO(2)/sorbent interactions. Among the sorbents under consideration are shape-selective microporous molecular sieves with hierarchical pore morphologies of reduced dimensionality. We have characterized the non-equilibrium CO(2) sorption of OMS-2, a well-known one-dimensional microporous octahedral molecular sieve with manganese oxide framework. Remarkably, we find that the degree of CO(2) sorption hysteresis increases when the gas/sorbent system is allowed to equilibrate for longer times at each pressure step. Density functional theory calculations indicate a "gate-keeping" role of the cation in the tunnel, only allowing CO(2) molecules to enter fully into the tunnel via a highly unstable transient state when CO(2) loadings exceed 0.75 mmol/g. The energy barrier associated with the gate-keeping effect suggests an adsorption mechanism in which kinetic trapping of CO(2) is responsible for the observed hysteretic behavior.  相似文献   

16.
Metal coordination was probed as a versatile approach for designing a novel electron donor/acceptor hybrid [PDIpy(4){Ru(CO)Pc}(4)] (1), in which four pyridines placed at the bay region of a perylenediimides (PDIpy(4)) coordinate with four ruthenium phthalocyanine units [Ru(CO)Pc]. This structural motif was expected to promote strong electronic coupling between the electron donors and the electron acceptor, a hypothesis that was confirmed in a full-fledged physicochemical investigation focusing on the ground and excited state reactivities. As far as the ground state is concerned, absorption and electrochemical assays indeed reveal a notable redistribution of electron density, that is, from the electron-donating [Ru(CO)Pc] to the electron-accepting PDIpy(4). The most important thing to note in this context is that both the [Ru(CO)Pc] oxidation and the PDIpy(4) reduction are rendered more difficult in 1 than in the individual building blocks. Likewise, in the excited state, strong electronic communication is the inception for a rapid charge-transfer process in photoexcited 1. Regardless of exciting [Ru(CO)Pc] or PDIpy(4), spectral characteristics of the [RuPc] radical cation (broad absorptive features from 425 to 600 nm with a maximum at 575 nm, as well as a band centered at 725 nm) and of the PDI radical anion (780 nm maximum) emerge. The correspondingly formed radical ion pair state lasts for up to several hundred picoseconds in toluene, for example. On the other hand, employing more polar solvents, such as dichloromethane, destabilizes the radical ion pair state.  相似文献   

17.
The surface dependence of CO adsorption on Ceria   总被引:1,自引:0,他引:1  
An understanding of the interaction between ceria and environmentally sensitive molecules is vital for developing its role in catalysis. We present the structure and energetics of CO adsorbed onto stoichiometric (111), (110), and (100) surfaces of ceria from first principles density functional theory corrected for on-site Coulomb interactions, DFT+U. DFT+U is applied because it can describe consistently the properties of both the stoichiometric and reduced surfaces. Our major finding is that the interaction is strongly surface dependent, consistent with experiment. Upon interaction of CO with the (111) surface, weak binding is found, with little perturbation to the surface or the molecule. For the (110) and (100) surfaces, the most stable adsorbate is that in which the CO molecule bridges two oxygen atoms and pulls these atoms out of their lattice sites, with formation of a (CO(3)) species. This results in a strong modification to the surface structure, consistent with that resulting from mild reduction. The electronic structure also demonstrates reduction of the ceria surface and consequent localization of charge on cerium atoms neighboring the vacancy sites. The surface-bound (CO(3)) species is identified as a carbonate, (CO(3))(2-) group, which is formed along with two reduced surface Ce(III) ions, in good agreement with experimental infrared data. These results provide a detailed investigation of the interactions involved in the adsorption of CO on ceria surfaces, allowing a rationalization of experimental findings and demonstrate further the applicability of the DFT+U approach to the study of systems in which reduced ceria surfaces play a role.  相似文献   

18.
以CO, NO, H_2, O_2作为探针分子, 应用红外光谱法和化学吸附法研究了还原态Co-Mo/Al_2O_3, Ru-Mo/Al_2O_3和Ru-Co-Mo/Al_2O_3催化剂中Co, Ru的助剂作用。结果表明, Co担载在Mo/Al_2O_3上, 由于Co与Al_2O_3之间的相互作用减弱, Co中心上吸附CO和NO的能力增强, 改变了Mo中心吸附CO, NO, H_2,O_2的能力, 表现出Co-Mo/Al_2O_3上的Co中心性质显著地不同于Co/Al_2O_3。Ru担载在Mo/Al_2O_3或Co-Mo/Al_2O_3催化剂上, Ru自身的吸附CO, H_2, O_2能力降低, 但促进了MoO_3的还原, 使CO, NO, H_2, O_2在Mo中心上的吸附量增加。可以认为, Ru的作用是活化, 解离氢, 通过溢流氢促进配位不饱和的Mo中心生成。Ru的这种作用比Co明显。  相似文献   

19.
采用密度泛函理论对CO与钯团簇的相互作用进行了系统研究. 结果表明, PdnCO(n=1-8)体系的最低能量结构是在Pdn(n=1-8)团簇最低能量结构或亚稳态结构的基础上吸附CO生长而成; CO的吸附以端位吸附为主, 其吸附没有改变Pdn团簇的结构; CO分子在Pdn团簇表面发生的是非解离性吸附. 与优化的CO键长(0.1166 nm)相比, 除了n=2, 团簇PdnCO的C—O键长为0.1167-0.1168 nm, 吸附后C—O键长变化较小, CO分子被活化程度较小. 电荷集居数分析表明, CO的吸附对Pdn团簇的影响比较小; 二阶能量差分表明, n=4,6的团簇是相对稳定的团簇.  相似文献   

20.
DFT and CCSD(T) methods were used to examine 61 different rhodium catalysts for the hydroformylation of ethylene. The carbon monoxide (CO) stretching frequency was a key electronic parameter to understand the π-accepting nature of the ligand. Normally, π-accepting ligands lead to increased CO stretching frequencies and a reduction in CO dissociation energy. There was no relationship between CO dissociation energy and CO stretching frequency. However, a clear relationship exists between the ethylene insertion barrier (from the rhodium dicarbonyl hydride resting state) and the CO stretching frequency as stronger π-accepting ligands systematically led to a reduction in the barrier. Due to the multistep nature of the rate-limiting step, the overall barrier can be divided into the CO/ethylene equilibrium and an intrinsic ethylene insertion barrier and both are systematically reduced as the π-accepting nature of the ligand is increased. A comparison of the carbonylation transition state (TS) to the ethylene insertion TS allowed us to understand reversibility of olefin insertion. While the ethylene insertion TS systematically decreases with increasing CO stretching frequency, the carbonylation TS is relatively flat. The lines cross at 2156 cm−1 implying a change in the rate-limiting step in this region given a standard set of process conditions. © 2018 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号