首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper describes the development and validation of a method for the quantitative analysis of Topiramate (2,3:4,5-bis-O-(1-methylethylidene)-beta-D-fructopyranose sulfamate), a new antiepileptic drug, in human plasma using liquid-liquid extraction followed by flow-injection negative ion electrospray mass spectrometry. Using Prednisone (1,4-pregnadiene-17-alpha,21-diol-3,11,20-trione [10 microg/mL]) as an internal standard, calibration curves for Topiramate were linear over a range of 1 to 30 microg/mL in human plasma and were highly reliable (r(2) = 0.9991). The lower limit of quantitation of the assay was 2 microg/mL in human plasma. Precision (%CV <15%) and accuracy (<20%) for both intra- and inter-day validations were satisfactory. The method has been used in clinical pharmacology research.  相似文献   

2.
Yang Y  Li C  Lee KH  Craighead HG 《Electrophoresis》2005,26(19):3622-3630
We report the integration of solid-phase extraction (SPE) with mass spectrometry (MS) through an on-chip electrospray tip for sample precleaning and preconcentration. An in situ polymerized alkylacrylate-based monolithic column was used as the stationary phase for the on-chip SPE. Each microchip consists of two sets of microchannels and their respective integrated electrospray tips, with a common gold electrode. After the microchip was fabricated from cycloolefin polymer by hot embossing, thermal bonding, and annealing steps, a mixture of monomers and porogenic solvents was pumped into the microchannels and certain areas of the main microchannels were exposed to UV irradiation through a mask. The resulting porous monolithic beds that were polymerized from different compositions of the mixture were characterized by scanning electron microscopy. The microchip containing the monolithic column was then interfaced to an ion trap (IT) mass spectrometer by modifying a commercially available interfacing system. Makeup solution from the side channel was infused concurrently with the solution flowing into the main channel, and the mixture of these two solutions was sprayed into the MS orifice. Both the adsorption and elution of a pharmaceutical test compound, imipramine, to and from the on-chip SPE columns were monitored by MS. The potential application of this device for sample cleanup was demonstrated by pretreatment of urine samples spiked with imipramine.  相似文献   

3.
4.
MS/MS data derived from the [M-H](-) ions of desulfated caerulein peptides provide (i) sequencing information from a combination of alpha, beta and gamma backbone cleavages, and (ii) identification of specific amino acid side chains by side-chain cleavages [e.g. Ser (-CH(2)O), Thr (-CH(3)CHO) and Asp (-H(2)O)] (fragmentations having no counterparts in positive ion spectra). In addition, delta and/or gamma backbone cleavage ions from Asp residues identify the position of these residues in the peptide. In contrast, neither delta nor gamma cleavage ions are observed from either the Gln2 residue nor from Phe residues. Full structural information can be obtained from a consideration of the positive and negative ion MS/MS data in concert.  相似文献   

5.
Hydrophilic interaction liquid chromatography (HILIC) is here successfully coupled to negative-ion electrospray ionization time-of-flight mass spectrometry (ESI-TOFMS) for the analysis of synthetic and chemically modified oligonucleotides. Separation was performed on a 2.1 mm × 100 mm PEEK ZIC® HILIC column packed with hydrophilic stationary phase with a permanent zwitterionic functional group and a particle size of 3.5 μm with an average pore diameter of 200 Å. A method was developed to separate homogeneous and heterogeneous oligonucleotides as well as methylated oligonucleotides using a quaternary pumping system containing ammonium acetate and water with an acetonitrile gradient. Analyses of oligonucleotides were performed by LC/MS with a detection limit of 2.5 picomole (20 mer) with signal to noise ratio (S/N) of 4.12. The influence of the eluent composition, type of buffer and its concentration, and organic modifier were also evaluated. The HILIC LC/MS method presented in this paper used common, ‘MS friendly’, mobile phases achieving sensitive and selective oligonucleotide analysis.  相似文献   

6.
Oxidized deoxynucleosides are widely used as biomarkers for DNA oxidation and oxidative stress assessment. Although gas chromatography mass spectrometry is widely used for the measurement of multiple DNA lesions, this approach requires complex sample preparation contributing to possible artifactual oxidation. To address these issues, a high performance liquid chromatography (HPLC)-tandem mass spectrometric (LC-MS/MS) method was developed to measure 8-hydroxy-2'-deoxyguanosine (8-OH-dG), 8-hydroxy-2'-deoxyadenosine (8-OH-dA), 2-hydroxy-2'-deoxyadenosine (2-OH-dA), thymidine glycol (TG), and 5-hydroxy-methyl-2'-deoxyuridine (HMDU) in DNA samples with fast sample preparation. In order to selectively monitor the product ions of these precursors with optimum sensitivity for use during quantitative LC-MS/MS analysis, unique and abundant fragment ions had to be identified during MS/MS with collision-induced dissociation (CID). Positive and negative ion electrospray tandem mass spectra with CID were compared for the analysis of these five oxidized deoxynucleosides. The most abundant fragment ions were usually formed by cleavage of the glycosidic bond in both positive and negative ion modes. However, in the negative ion electrospray tandem mass spectra of 8-OH-dG, 2-OH-dA, and 8-OH-dA, cleavage of two bonds within the sugar ring produced abundant S1 type ions with loss of a neutral molecule weighing 90 u, [M - H - 90]-. The signal-to-noise ratio was similar for negative and positive ion electrospray MS/MS except in the case of thymidine glycol where the signal-to-noise was 100 times greater in negative ionization mode. Therefore, negative ion electrospray tandem mass spectrometry with CID would be preferred to positive ion mode for the analysis of sets of oxidized deoxynucleosides that include thymidine glycol. Investigation of the fragmentation pathways indicated some new general rules for the fragmentation of negatively charged oxidized nucleosides. When purine nucleosides contain a hydroxyl group in the C8 position, an S1 type product ion will dominate the product ions due to a six-membered ring hydrogen transfer process. Finally, a new type of fragment ion formed by elimination of a neutral molecule weighing 48 (CO2H4) from the sugar moiety was observed for all three oxidized purine nucleosides.  相似文献   

7.
8.
On-line electrochemistry/electrospray ionization mass spectrometry (EC/ESI-MS) was developed using a microflow electrolytic cell. This technique was applied to electrochemical oxidation of caffeic acid (CAF) which is known to be a highly antioxidative agent. Effects of electrolytic potentials on ion intensities of product ions and on electrolytic currents were examined at different pHs. Dimer products were detected at electrolytic potentials of E = 0.7 V (vs. Ag/AgCl) and trimer products at 1.0 V at pH 9. Dimer products were distinguished from hydrogen-bonded complexes by MS/MS experiments. Hydrogen/deuterium exchange experiments determined the number of hydroxyl and carboxyl groups in the Dimers formed by electrolysis. The mechanism of oxidative polymerization of CAF is discussed with speculation as to the structure of the dimer product.  相似文献   

9.
Mono- or oligosaccharide-containing samples, whether they are derived from biological sources or products of chemical synthesis, are often mixtures of spatial or constitutional isomers. The possibility of characterising or performing quality control on such samples by mass spectrometry is hampered because these isomers cannot be separated by their mass-to-charge ratio alone. Therefore, the use of techniques to separate the isobaric sample compounds prior to mass spectrometric characterisation is mandatory. Travelling wave ion mobility separation offers the possibility of separating mixtures based on their compound's collisional cross-sections in the gas phase and can easily be combined with mass spectrometry for further characterisation. Here, we use 5-N-acetylneuraminic acid and several derivatives as model compounds to evaluate the separation power of travelling wave ion mobility spectrometry and present an approach to clearly identify constitutional isomers in mixtures in combination with low-energy collision-induced dissociation (CID) in the negative ion mode even if they cannot be completely separated by ion mobility.  相似文献   

10.
This study has elucidated the fragmentation pathway for deprotonated isoflavones in electrospray ionization using MS(n) ion trap mass spectrometry and triple quadrupole mass spectrometry. Genistein-d(4) and daidzein-d(3) were used as references for the clarification of fragment structures. To confirm the relationship between precursor and product ions, some fragments were traced from MS(2) to MS(5). The previous literature for the structurally related flavones and flavanones located the loss of ketene (C(2)H(2)O) to ring C, whereas the present fragmentation study for isoflavones has shown that the loss of ketene occurs at ring A. In the further fragmentation of the [M-H-CH(3)](-*) radical anion of methoxylated isoflavones, loss of a hydrogen atom was commonly found. [M-H-CH(3)-CO-B-ring](-) is a characteristic fragment ion of glycitein and can be used to differentiate glycitein from its isomers. Neutral losses of CO and CO(2) were prominent in the fragmentation of deprotonated anions in ion trap mass spectrometry, whereas recyclization cleavage accounted for a very small proportion. In comparison with triple quadrupole mass spectrometry, ion trap MS(n) mass spectrometry has the advantage of better elucidation of the relationship between precursor and product ions.  相似文献   

11.
Lipid hydroperoxides are important products of enzymatic processes and autooxidation products of polyunsaturated fatty acids. Analysis of such compounds has proved difficult in the past, but negative ion electrospray ionization mass spectrometry was found to be suitable for direct analysis. Abundant [M - H] ions were observed in full scan mode for hydroperoxyeicosatetraenoic (HPETE), hydroperoxyoctadecenoic acid isomers, and 5,12-diHPETE. Loss of water was observed for all species. Collisional activation and tandem mass spectrometry generated unique and characteristic spectra that shared some common features such as loss of small neutral molecules. More importantly, fragment ions that were indicative of the position of the hydroperoxide were observed. Collision-induced decomposition (CID) of [M - H2O] for the HPETE isomers was found to be virtually identical to the CID mass spectra of the [M - H] anions from corresponding keto-eicosatetraenoic acids, which suggests that the hydroperoxide anions decompose via a dehydration intermediate that resembles the keto acid molecular anion. Cleavage of the double bond allylic to the hydroperoxide formed structurally characteristic ions at m/z 129 from 5-HPETE, m/z 153 from 12-HPETE, and m/z 113 from 15-HPETE. Charge-driven allylic fragmentation led to formation of m/z 203 from 5-HPETE, m/z 179 from 12-HPETE, and m/z 219 from 15-HPETE. Mechanisms consistent with the decomposition of stable isotope analogues are proposed for the formation of these and other characteristic ions. These specific decompositions can be used in multiple reaction monitoring to measure picomolar concentrations of hydroperoxides by direct high performance liquid chromatography tandem mass spectrometry.  相似文献   

12.
An experimental approach, electrospray mass spectrometry (ES-MS), and a theoretical approach employing computer modeling, have been used to characterize the interaction between small inorganic anions and neutral analyte molecules that form anionic adduct species in negative mode ES mass spectrometry. Certain anionic adducts of small saccharides (e.g., alpha-D-glucose, sucrose) have shown exceptional stability in ES mass spectra even when internal energies are raised at high "cone" voltages. Computer modeling studies reveal that multiple hydrogen bonding strengthens the interaction between these neutral molecules and the attaching anion. The equilibrium structures and stabilization energies of these anionic adducts have been evaluated by semi-empirical, ab initio, and density functional theory (DFT) methods. Chloride anion is found to be capable of forming "bridging" hydrogen bonds between monosaccharide rings of polysaccharides resulting in the stabilization of chloride adducts, thus reducing the tendency for the glycosidic bond to decompose. Moreover, the tendency for various hydroxyl hydrogens on saccharide molecules to dissociate in the form of HA (A-, anion) during decomposition of anionic adducts, thereby forming [M - H]-, has also been evaluated by computer modeling.  相似文献   

13.
Pentachlorophenol (PCP) was used as a model compound to explore the potential of desorption chemical ionization (DCI) in the determination of polychlorinated pesticides using membrane introduction mass spectrometry (MIMS). A direct insertion membrane probe was modified so that a chemical ionization plasma could be established at the membrane surface. Using selected ion monitoring (SIM) in a tandem triple quadrupole mass spectrometer with isobutane chemical ionization (CI), the PCP detection limit under positive chemical ionization is 20 ppb whereas negative CI gives detection limits in the low ppb range. This performance is achieved without any pre-treatment or derivatization of the sample. Negative ion CI gives a signal that is linear over a concentration range of 2-1000 ppb. Comparison of data obtained with low ppb samples of 2,4,6-trichlorophenol, 2,3,4,6-tetrachlorophenol and pentachlorophenol suggests that the sensitivity of this analytical procedure increases with increase in the number of electronegative substituents in the molecule.  相似文献   

14.
Eleven naturally occurring flavonoid aglycones, belonging to the representative flavone, flavonol, and flavanone types were separated by high performance liquid chromatography and analyzed on-line with negative ion electrospray ionization tandem mass spectrometry (ESI-MS/MS). In order to resolve the MS/MS spectra obtained, each compound was reinvestigated by direct loop injections using an ion trap mass spectrometer. The MSn spectra obtained allowed us to propose plausible schemes for their fragmentation supported by the analysis of five complementary synthetic flavonoid aglycones. The negative ion ESI-MS/MS behavior of the different aglycones investigated in this study revealed interesting differences when compared with the previously described patterns obtained using various ionization techniques in positive ion. Thus, concerning the retro Diels-Alder (RDA) fragmentation pathways, several structurally informative anions appeared highly specific of the negative ion mode. In addition, a new lactone-type structure, instead of a ketene, was proposed for a classic RDA diagnostic ion. We also observed unusual CO, CO2, and C3O2 losses which appear to be characteristic of the negative ion mode. All these results and these unusual neutral losses show that the negative ion mode was a powerful complementary tool of the positive ion mode for the structural characterization of flavonoid aglycones by ESI-MS/MS.  相似文献   

15.
16.
Some compounds readily form [M+46]+ adduct ions during positive ion electrospray ionization mass spectrometry ((+)ESI-MS) analysis. These [M+46]+ ions were characterized as [M+CH3CH2NH2+H]+ by accurate mass determination. Ethylamine involved in the adduct was proposed to be the reduction product of acetonitrile and this was confirmed using deuterated acetonitrile. Other nitrile-containing compounds tested, including isobutyronitrile and benzonitrile, also formed the adduct ions of the respective amine forms under (+)ESI-MS conditions. Hydrogen/deuterium exchange experiments demonstrated that the reductive hydrogen originated from water. Reduction of nitriles (R-CN) to their respective amines (R-CH2NH2) under (+)ESI-MS conditions expands the ability to identify nitrile-containing chemical unknowns.  相似文献   

17.
The native structure of hemoglobin (Hb) comprises two alpha- and two beta-subunits, each of which carries a heme group. There appear to be no previous studies that report the in vitro folding and assembly of Hb from highly unfolded alpha- and beta-globin in a "one-pot" reaction. One difficulty that has to be overcome for studies of this kind is the tendency of Hb to aggregate during refolding. This work demonstrates that denaturation of Hb in 40% acetonitrile at pH 10.0 is reversible. A dialysis-mediated solvent change to a purely aqueous environment of pH 8.0 results in Hb refolding without any apparent aggregation. Fluorescence, Soret absorption, circular dichroism, and ESI mass spectra of the protein recorded before unfolding and after refolding are almost identical. By employing an externally pressurized dialysis cell that is coupled on-line to an ESI mass spectrometer, changes in heme binding behavior, protein conformation, and quaternary structure can be monitored as a function of time. The process occurs in a stepwise sequential manner, leading from monomeric alpha- and beta-globin to heterodimeric species, which then assemble into tetramers. Overall, this mechanism is consistent with previous studies employing the mixing of folded alpha- and beta-globin. However, some unexpected features are observed, e.g., a heme-deficient beta-globin dimer that represents an off-pathway intermediate. Monomeric beta-globin is capable of binding heme before forming a complex with an alpha-subunit. This observation suggests that holo-alpha-apo-beta globin does not represent an obligatory intermediate during Hb assembly, as had been proposed previously. The on-line dialysis/ESI-MS approach developed for this work represents a widely applicable tool for studying the folding and self-assembly of noncovalent biological complexes.  相似文献   

18.
Shi P  He Q  Song Y  Qu H  Cheng Y 《Analytica chimica acta》2007,598(1):110-118
Flavonoid O-diglycosides are important bioactive compounds from genus Citrus. They often occur as isomers, which makes the structural elucidation difficult. In the present study, the fragmentation behavior of six flavonoid O-diglycosides from genus Citrus was investigated using ion trap mass spectrometry in negative electrospray ionization (ESI) with loop injection. For the flavonoid O-rutinosides, [M − H − 308] ion was typically observed in the MS2 spectrum, suggesting the loss of a rutinose. The fragmentation patterns of flavonoid O-neohesperidosides were more complicated in comparison with their rutinoside analogues. A major difference was found in the [M − H − 120] ion in the MS2 spectrum, which was a common feature of all the flavonoid O-neohesperidosides. The previous literature for naringin located the loss of 120 Da to the glycan part, whereas the present study for naringin had shown that the [M − H − 120] ion was produced by a retro-Diels-Alder reaction in ring C, and this fragmentation pattern was confirmed by the accurate mass measurement using an orthogonal time-of-flight mass spectrometer. Combined with high performance liquid chromatography (HPLC) and diode array detection (DAD), the established approach to the structural identification of flavonoid O-diglycosides by ion trap mass spectrometry was applied to the analysis of extracts of two Chinese medicines derived from genus Citrus, namely Fructus aurantii and F. aurantii immaturus. According to the HPLC retention behavior, the diagnostic UV spectra and the molecular structural information provided by multistage mass spectrometry (MSn) spectra, 13 flavonoid O-glycosides in F. aurantii and 12 flavonoid O-glycosides in F. a. immaturus were identified rapidly.  相似文献   

19.
A simple, automated and rapid method has been developed for the determination of a novel antiviral peptide sifuvirtide in monkey plasma. Raw plasma samples were directly loaded onto an on-line solid-phase extraction (SPE) column, which removes the time-consuming and laborious sample pretreatment. Following a timed valve-switching event, the analyte was eluted on-line to a reversed-phase high-performance liquid chromatography (RP-HPLC) column and subsequently introduced into a linear ion trap mass spectrometer, LTQ-MS, via an electrospray ionization (ESI) interface. The multiply charged peptides were specified and quantitatively analyzed using selective reaction monitoring (SRM). A highly pure four iodine-sifuvirtide was synthesized using an optimized iodogen method and proved to be a suitable internal standard (IS). A single analysis run takes about 18 min. Validation of the method demonstrated that the linear calibration curves covered the range of 4.88-5000 ng/mL, and the correlation coefficients were above 0.9923. The limit of detection (LOD) with the signal-to-noise (S/N) ratio higher than 12 was calculated as 1.22 ng/mL. The intra- and inter-batch precisions were less than 12.7% and 9.1%, and the mean accuracy ranged from -5.2% to 3.6%, respectively. Any carry-over effect from the system was negligible. In a pharmacokinetic (PK) study of sifuvirtide after a single intravenous or subcutaneous dose in monkeys, the on-line SPE-LC/MS/MS system was successfully utilized to determine hundreds of samples with only one extraction column, which indicated the feasibility and the reliability of this method for application in preclinical and clinical PK studies of peptide drugs.  相似文献   

20.
Electrospray ionization mass spectrometry (ESI-MS) was used to investigate the binding of 13 alkaloids to two GC-rich DNA duplexes which are critical sequences in human survivin promoter. Negative ion ESI-MS was first applied to screen the binding of the alkaloids to the duplexes. Six alkaloids (including berberine, jatrorrhizine, palmatine, reserpine, berbamine, and tetrandrine) show complexation with the target DNA sequences. Relative binding affinities were estimated from the negative ion ESI data, and the alkaloids show a binding preference to the duplex with higher GC content. Positive ion ESI mass spectra of the complexes were also recorded and compared with those obtained in negative ion mode. Only the 1 : 1 complex with berbamine was observed with lower abundance in the positive ion mass spectrum while complexes with the other alkaloids were absolutely absent. Collision-induced dissociation (CID) experiments indicate that the complexes with the protoberberine alkaloids (berberine, jatrorrhizine, and palmatine) dissociate via base loss and covalent cleavage. In contrast, product ion spectra of the complexes with the alkaloids reserpine, berbamine, and tetrandrine show the predominant loss of a neutral alkaloid molecule, accompanied by base loss and covalent cleavage to a lesser extent. A comparison of the gas-phase behaviors of complexes with the alkaloids to those with the traditional DNA binders has suggested an intercalative binding mode of these alkaloids to the target DNA duplexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号