首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the distribution function approach to the conformational and thermodynamic properties of polymeric liquids site-site (pair) distribution functions are essential components of the theory. These site-site pair distribution functions are basically mean fields obeying integral equations. In our recent works, a set of self-consistent field equations has been proposed for site-site pair correlation functions which allow us to study conformational and thermodynamic properties of polymeric liquids. In this article, we present a short review of the theory and its applications to a number of aspects of polymeric liquids we have made until now. We also present a self-consistent version of the polymer reference interaction site model where the integral equations for the intramolecular site-site correlation functions are obtained from the Kirkwood hierarchy on the basis of the present theory. The present theory is shown to predict correctly the scaling properties associated with swollen and collapsed polymers in good and poor solvents, respectively. At finite densities, self-consistent solutions of the intra- and intermolecular equations yield the structures and thermodynamics of polymer melts which are favorably compared with Monte Carlo simulation results. Self-consistent theory results are found to be more accurate than the non-self-consistent approaches that use an ideal Gaussian chain conformation distribution function. © 1995 John Wiley & Sons, Inc.  相似文献   

2.
The conformational and dynamic properties of polypropylene (PP) for both pure melts and blends with different chain tacticity were investigated by Monte Carlo simulation of isotactic (iPP), atactic (aPP) and syndiotactic (sPP) polypropylenes. The simulation of coarse-grained PP models was performed on a high coordination lattice incorporating short- and long-range intramolecular interactions from the rotational isomeric state (RIS) model and Lennard-Jones (LJ) potential function of propane pairs, respectively. The dynamics of chains in binary PP/PP mixture were investigated with the composition of C150H302 with different chain taciticity. The diffusion rates of PP with different stereochemistry are generally in the order as: iPP 〉 aPP 〉〉 sPP. For PP/PP blends with 50:50 wt% binary mixtures, immiscibility was observed when sPP was introduced into the mixtures. The diffusion rate of iPP and aPP became slower after mixing, while sPP diffuses significantly faster in the binary mixtures. The mobility of PP chains depends on both intramolecular (molecular size and chain stiffness) and intermolecular (chain packing) interactions. The effect of intramolecular contribution is greater than that of intermolecular contribution for iPP and aPP chains in binary mixtures. For sPP chain, intermolecular interaction has greater influence on the dynamics than intramolecular contribution.  相似文献   

3.
A theoretical analysis has been developed to predict fluorescence nonradiative energy transfer (NBET) behavior in homogeneous and phase-separated polymer blends. Conditions where intermolecular correlations need to be included are examined by first investigating the effect of including intermolecular correlations in predictions of NRET behavior in donor and trap (acceptor) end-labeled polymer melts. Donor fluorescence decays and energy transfer efficiencies are predicted for several different polymer systems using donor-trap intermolecular correlations in the theoretical analysis. These results are compared quantitatively to the same predictions recalculated without correlations and demonstrate the need to consider the effects of correlations when analyzing NRET measurements used for quantitative study of phase behavior. For the nonradiative energy transfer systems investigated here, correlation effects can often result in substantial differences, up to 60% as compared to the uncorrelated case, in predictions of relative energy transfer efficiency for bulk polymer. In the case of the blends, the effect of including intermolecular correlations is strongly a function of composition. A two-phase model is proposed to establish a quantitative method for relating energy transfer efficiency to phase-separated blend composition, and it is demonstrated that significant errors in interpretation of experimental NRET data may result if correlation effects are not included. © 1994 John Wiley & Sons, Inc.  相似文献   

4.
高分子熔体结晶的两维计算机模拟胡文兵,于同隐,卜海山(复旦大学高分子科学系,复旦大学材料科学系,上海,200433)关键词计算机模拟,有序相变,高分子1956年Flory[1]从平均场近似的格子模型证明:高分子链的非柔顺性会导致长链的完全有序排列.此...  相似文献   

5.
Wide-angle X-ray diffraction measurements were performed on polymer melts of isotactic and syndiotactic polypropylene (IPP and SPP), poly(ethylenepropylene) (PEP), polystyrene (PS), polyisobutylene (PIB), and polyethylene (PE), to study the dependence of the short-range structure of polymer liquids on chain architecture. Total structure functions, which comprise intra- and intermolecular contributions, were derived from the scattering data. The trivial Fourier components of the intramolecular structure (C(SINGLE BOND)>C ≃ 1.54 Å and C(SINGLE BOND)C(SINGLE BOND)C ≃ 2.55 Å) were subtracted from the total structure functions. The remaining functions contain only those intramolecular contributions dependent on the chain's conformational degrees of freedom, plus the intramolecular contributions. The structural differences between the polymers in momentum space are discerned only when the trivial components are subtracted. This subtraction also reduces the effects of truncation errors on Fourier transformation to real space. The short-range structure of PIB appears very different compared to all the others, which correlates with anomalies in a number of physical properties for this polymer. © 1996 John Wiley & Sons, Inc.  相似文献   

6.
The effect of intermolecular correlations on the angular dependence of the intensity of Rayleigh scattering from a dilute solution of a flexible-chain polymer in a good solvent is studied for an approximate model that retains the random-flight intramolecular segment-pair correlation while probabilities of multiple intermolecular contacts are simplified as products of probabilities of single contacts, all conditional on a common “initial” contact. This model, unlike one in which a polymer chain is represented as a spherically symmetrical cloud of segments, gives very little deviation from Zimm's “single-contact” approximation in light scattering: i.e., the initial concentration dependence of the concentration/intensity ratio is almost the same at all scattering angles. This behavior, which appears to underestimate the intermolecular correlations, can be accounted for by the symmetry of the bimolecular cluster as represented by the model.  相似文献   

7.
With the availability of commercial field-cycling relaxometers together with progress of home-built instruments nuclear magnetic resonance relaxometry has gained new momentum as a method of investigating the dynamics in viscous liquids and polymer melts. The method provides the frequency dependence of the spin–lattice relaxation rate. In the case of protons, one distinguishes intramolecular and intermolecular relaxation pathways. Whereas the intramolecular contribution prevails at high frequencies and reflects rotational dynamics, the often ignored intermolecular relaxation contribution dominates at low-frequency and provides access to translational dynamics. A universal low-frequencies dispersion law holds which in pure systems allows determining the diffusion coefficient in a straightforward way. In addition, the rotational time constant is extracted from the high-frequency relaxation contribution. This is demonstrated for simple and ionic liquids and for polymer melts.  相似文献   

8.
The polymer reference interaction site model theory is investigated for two-dimensional polymer melts composed of freely-jointed hard disk chains and tangent-disk rods. Exact results for the intramolecular pair correlation functions are input into the theory, and predictions of the theory for the intermolecular pair correlation functions are tested via comparison with simulation. The theory is not as accurate for this system as it is for three-dimensional polymer melts, and the quantitative predictions are not good except at the highest area fractions. Possible reasons for the deficiency in the theory are discussed.  相似文献   

9.
Poly(1‐adamantyl acrylate) (PAdA) exhibits much higher glass transition and degradation temperatures than other polyacrylates. However, the quantitative evaluation of the stiffness of this polymer chain has not been reported previously. In this study, the dilute solution properties and conformational characteristics of PAdA were evaluated using viscometry and scattering techniques. The unperturbed dimensions of this polymer were evaluated using the Burchard–Stockmayer–Fixman extrapolation and the touched‐bead wormlike chain model. The PAdA chain has a comparable persistence length, diameter per bead and characteristic ratio to poly(methyl methacrylate) and polystyrene. All these results indicate that PAdA is less flexible than common polyacrylates. In addition, the second virial coefficients (A2) of PAdA in different solvents obtained by static light scattering were compared. Among the solvents investigated, tetrahydrofuran is a moderate solvent. Radius of gyration of a polymer sample in the various solvents ranged from 16.8 to 30.3 nm. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1526–1531  相似文献   

10.
Electrooptical characteristics of mesogenic chain molecules in solution and in mesophase can be described in terms of intra- and intermolecular orientational orders. The value and sign of electric birefringence δn in a solution of kinetically rigid chain molecules are determined by the combination of two factors: intramolecular orientational order which depends on the dipolar and anisotropic architecture of the molecule and intermolecular orientational order caused by the action of the external electric field E. The value and sign of the dielectric anisotropy δε of the polymer nematic phase are also determined by the combination of intra- and intermolecular orders. However, in this case the latter is not maintained by the external field but by the nematic potential of the mesophase. Therefore, comparative investigations of electrooptical properties of polymers in solutions and in nematic melts make it possible to obtain information about the intra- and intermolecular orientational orders of the molecules under investigation in these two states. These investigations were carried out using the method of electric birefringence in solutions and the method of orientational deformations of nematic textures in an electric field. The objects being investigated were nematogenic dimers and trimers. Experimental data obtained for these compounds showed the presence of intramolecular order in their molecules, which is manifested in the odd-even oscillations of the value and sign of Kerr constant K≈δn/E2 in solution and δε in the nematic phase when the number of C-C bonds in the methylene spacers of these molecules is varied. This effect is particularly dramatic in the mesophase where it is enhanced by intermolecular nematic potential.  相似文献   

11.
12.
Polymer conformational analyses can require being able to model the intramolecular energetics of a very long (infinite) chain employing calculations carried out on a relatively short chain sequence. A method to meet this need, based upon symmetry considerations and molecular mechanics energetics, has been developed. Given N equivalent degrees of freedom in a linear polymer chain, N unique molecular groups are determined within the chain. A molecular unit is defined as a group of atoms containing backbone rotational degrees of conformational freedom on each of its ends. The interaction of these N molecular groups, each with a finite number of nearest neighbors, properly describe the intramolecular energetics of a long (infinite) polymer chain. Thus, conformational energetics arising from arbitrarily distant neighbor interactions can be included in the estimation of statistical and thermodynamic properties of a linear polymeric system. This approach is called the polymer reduced interaction matrix method (PRIMM) and the results of applying it to isotactic polystyrene (I-PS) are presented by way of example.  相似文献   

13.
The diMarzio theory has been extended to elucidate the intermolecular and intramolecular phase segregations of a single flexible chain polyelectrolyte in dilute salt-free solutions. At the long chain limit, this theory yields the formalism obtained from the more sophisticated Edward Hamiltonian for polyelectrolyte problems. The calculated phase diagram exhibits the features of a first-order phase transition, with continuous and discontinuous transitions separated by a critical point. Under the discontinuous transition, the polyelectrolyte chain exhibits coexistent expanded and collapsed conformational states, same as intermolecular phase segregation. For a limiting long chain, the mean chain size at critical point is roughly 90% of the size of an ideal chain. Such a result implies that partial contraction within a chain molecule is required to collapse a flexible polyelectrolyte chain. Moreover, the theory predicts that for a longer chain, intramolecular segregated conformations differ significantly from intermolecular segregated conformations, but the difference becomes small for shorter chains. Besides, the charge needed to induce intramolecular segregation is smaller than that of intermolecular segregation for a given chain length. These findings are consistent with previous literature results.  相似文献   

14.
We propose a statistical dynamical theory for the violation of the hydrodynamic Stokes-Einstein (SE) diffusion law for a spherical nanoparticle in entangled and unentangled polymer melts based on a combination of mode coupling, Brownian motion, and polymer physics ideas. The non-hydrodynamic friction coefficient is related to microscopic equilibrium structure and the length-scale-dependent polymer melt collective density fluctuation relaxation time. When local packing correlations are neglected, analytic scaling laws (with numerical prefactors) in various regimes are derived for the non-hydrodynamic diffusivity as a function of particle size, polymer radius-of-gyration, tube diameter, degree of entanglement, melt density, and temperature. Entanglement effects are the origin of large SE violations (orders of magnitude mobility enhancement) which smoothly increase as the ratio of particle radius to tube diameter decreases. Various crossover conditions for the recovery of the SE law are derived, which are qualitatively distinct for unentangled and entangled melts. The dynamical influence of packing correlations due to both repulsive and interfacial attractive forces is investigated. A central finding is that melt packing fraction, temperature, and interfacial attraction strength all influence the SE violation in qualitatively different directions depending on whether the polymers are entangled or not. Entangled systems exhibit seemingly anomalous trends as a function of these variables as a consequence of the non-diffusive nature of collective density fluctuation relaxation and the different response of polymer-particle structural correlations to adsorption on the mesoscopic entanglement length scale. The theory is in surprisingly good agreement with recent melt experiments, and new parametric studies are suggested.  相似文献   

15.
A series of main‐chain poly(amide‐triazole)s were prepared by copper(I)‐catalyzed alkyne–azide AABB‐type copolymerizatons between five structurally similar diacetylenes 1 – 5 with the same diazide 6 . The acetylene units in monomers 1 – 5 possessed different degrees of conformational flexibility due to the different number of intramolecular hydrogen bonds built inside the monomer architecture. Our study showed that the conformational freedom of the monomer had a profound effect on the polymerization efficiency and the thermoreversible gelation properties of the resulting copolymers. Among all five diacetylene monomers, only the one, that is, 1 ‐Py(NH)2 which possesses the pyridine‐2,6‐dicarboxamide unit with two built‐in intramolecular H bonds could produce the corresponding poly(amide‐triazole) Poly‐(PyNH)2 with a significantly higher degree of polymerization (DP) than other monomers with a lesser number of intramolecular H bonds. In addition, it was found that only this polymer exhibited excellent thermoreversible gelation ability in aromatic solvents. A self‐assembling model of the organogelating polymer Poly‐(PyNH)2 was proposed based on FTIR spectroscopy, XRD, and SEM analyses, in which H bonding, π–π aromatic stacking, hydrophobic interactions, and the structural rigidity of the polymer backbone were identified as the main driving forces for the polymer self‐assembly process.  相似文献   

16.
Self-assembled behavior of symmetric ABA rod-coil-rod triblock copolymer melts is studied by applying self-consistent-field lattice techniques in three-dimensional space. The phase diagram is constructed to understand the effects of the chain architecture on the self-assembled behavior. Four stable structures are observed for the ABA rod-coil-rod triblock, i.e., spherelike, lamellar, gyroidlike, and cylindrical structures. Different from AB rod-coil diblock and BAB coil-rod-coil triblock copolymers, the lamellar structure observed in ABA rod-coil-rod triblock copolymer melts is not stable for high volume fraction of the rod component (f(rod)=0.8), which is attributed to the intramolecular interactions between the two rod blocks of the polymer chain. When 0.3相似文献   

17.
Local chain structure and local environment play an important role in the dynamics of polymer chains in miscible blends. In general, the friction coefficients that describe the segmental dynamics of the two components in a blend differ from each other and from those of the pure melts. In this work, we investigate polymer blend dynamics with Monte Carlo simulations of a generalized bond fluctuation model, where differences in the interaction energies between nonbonded nearest neighbors distinguish the two components of a blend. Simulations employing only local moves and respecting a no bond crossing condition were carried out for blends with a range of compositions, densities, and chain lengths. The blends investigated here have long time dynamics in the crossover region between Rouse and entangled behavior. In order to investigate the scaling of the self-diffusion coefficients, characteristic chain lengths N(c) are calculated from the packing length of the chains. These are combined with a local mobility mu determined from the acceptance rate and the effective bond length to yield characteristic self-diffusion coefficients D(c)=muN(c). We find that the data for both melts and blends collapse onto a common line in a graph of reduced diffusion coefficients DD(c) as a function of reduced chain length NN(c). The composition dependence of dynamic properties is investigated in detail for melts and blends with chains of length N=20 at three different densities. For these blends, we calculate friction coefficients from the local mobilities and consider their composition and pressure dependence. The friction coefficients determined in this way show many of the characteristics observed in experiments on miscible blends.  相似文献   

18.
The method of the modeling of the radial distribution function for liquid and amorphous polymers is described. The method consists in the use of pair functions of the radial distribution (ideal peaks) for the construction of the distribution function of intramolecular distances and the comparison of the theoretical function with the experimental one. The theoretical functions for two possible conformations of the poly(tetramethylene glycol) macromolecule were computed. It follows from comparison of the computed theoretical functions with the experimental one that the intramolecular distances do not become apparent in the experimental curve. The differential functions containing the contributions of the intermolecular distances only were obtained by subtraction of the theoretical function from the experimental. Comparison of the differential functions of the two conformational states which were taken as models proved that there are large numbers of gauche conformations in the liquid polymer in contrast to the crystalline polymer. On the basis of the analysis of the differential functions for liquid and crystalline poly(tetramethylene glycol), we concluded that the short-range order of the polymer is distorted during the melting in that the basic plane of the poly(tetramethylene glycol) paracrystal becomes almost hexagonal.  相似文献   

19.
Solvent effects on polymer dynamics and structure are investigated using a mesoscopic solvent model that accounts for hydrodynamic interactions among the polymer beads. The simulation method combines molecular dynamics of the polymer chain, interacting with the solvent molecules through intermolecular forces, with mesoscopic multiparticle collision dynamics for the solvent molecules. Changes in the intermolecular forces between the polymer beads and mesoscopic solvent molecules are used to vary the solvent conditions from those for good to poor solvents. Polymer collapse and expansion dynamics following changes in solvent conditions are studied for homopolymer and block copolymer solutions. The frictional properties of polymers are also investigated.  相似文献   

20.
By means of computer simulations and solution of the equations of the mode coupling theory (MCT), we investigate the role of the intramolecular barriers on several dynamic aspects of nonentangled polymers. The investigated dynamic range extends from the caging regime characteristic of glass-formers to the relaxation of the chain Rouse modes. We review our recent work on this question, provide new results, and critically discuss the limitations of the theory. Solutions of the MCT for the structural relaxation reproduce qualitative trends of simulations for weak and moderate barriers. However, a progressive discrepancy is revealed as the limit of stiff chains is approached. This disagreement does not seem related with dynamic heterogeneities, which indeed are not enhanced by increasing barrier strength. It is not connected either with the breakdown of the convolution approximation for three-point static correlations, which retains its validity for stiff chains. These findings suggest the need of an improvement of the MCT equations for polymer melts. Concerning the relaxation of the chain degrees of freedom, MCT provides a microscopic basis for time scales from chain reorientation down to the caging regime. It rationalizes, from first principles, the observed deviations from the Rouse model on increasing the barrier strength. These include anomalous scaling of relaxation times, long-time plateaux, and nonmonotonous wavelength dependence of the mode correlators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号