首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 90 毫秒
1.
The reaction of [Ni2(OH)2(Me2-tpa)2]2+ (1) (Me2-tpa = bis(6-methyl-2-pyridylmethyl)(2-pyridylmethyl)amine) with H2O2 causes oxidation of a methylene group on the Me2-tpa ligand to give an N-dealkylated ligand and oxidation of a methyl group to afford a ligand-based carboxylate and an alkoxide as the final oxidation products. A series of sequential reaction intermediates produced in the oxidation pathways, a bis(mu-oxo)dinickel(III) ([Ni2(O)2(Me2-tpa)2]2+ (2)), a bis(mu-superoxo)dinickel(II) ([Ni2(O2)2(Me2-tpa)2]2+ (3)), a (mu-hydroxo)(mu-alkylperoxo)dinickel(II) ([Ni2(OH)(Me2-tpa)(Me-tpa-CH2OO)]2+ (4)), and a bis(mu-alkylperoxo)dinickel(II) ([Ni2(Me-tpa-CH2OO)2]2+ (5)), was isolated and characterized by various physicochemical measurements including X-ray crystallography, and their oxidation pathways were investigated. Reaction of 1 with H2O2 in methanol at -40 degrees C generates 2, which is extremely reactive with H2O2, producing 3. Complex 2 was isolated only from disproportionation of the superoxo ligands in 3 in the absence of H2O2 at -40 degrees C. Thermal decomposition of 2 under N2 generated an N-dealkylated ligand Me-dpa ((6-methyl-2-pyridylmethyl)(2-pyridylmethyl)amine) and a ligand-coupling dimer (Me-tpa-CH2)2. The formation of (Me-tpa-CH2)2 suggests that a ligand-based radical Me-tpa-CH2* is generated as a reaction intermediate, probably produced by H-atom abstraction by the oxo group. An isotope-labeling experiment revealed that intramolecular coupling occurs for the formation of the coupling dimer. The results indicate that the rebound of oxygen to Me-tpa-CH2* is slower than that observed for various high-valence bis(mu-oxo)dimetal complexes. In contrast, the decomposition of 2 and 3 in the presence of O2 gave carboxylate and alkoxide ligands, respectively (Me-tpa-COO- and Me-tpa-CH2O-), instead of (Me-tpa-CH2)2, indicating that the reaction of Me-tpa-CH2* with O2 is faster than the coupling of Me-tpa-CH2* to generate ligand-based peroxyl radical Me-tpa-CH2OO*. Although there is a possibility that the Me-tpa-CH2OO* species could undergo various reactions, one of the possible reactive intermediates, 4, was isolated from the decomposition of 3 under O2 at -20 degrees C. The alkylperoxo ligands in 4 and 5 can be converted to a ligand-based aldehyde by either homolysis or heterolysis of the O-O bond, and disproportionation of the aldehyde gives a carboxylate and an alkoxide via the Cannizzaro reaction.  相似文献   

2.
The two-electron oxidation of the lithium salts of the heterodichalcogenidoimidodiphosphinate anions [(EP (i)Pr 2)(TeP (i)Pr 2)N] (-) ( 1a, E = S; 1b, E = Se) with iodine yields cyclic cations [(EP (i)Pr 2)(TeP (i)Pr 2)N] (+) as their iodide salts [(SP (i)Pr 2)(TeP (i)Pr 2)N]I ( 2a) and [(SeP (i)Pr 2)(TeP (i)Pr 2)N]I ( 2b). The five-membered rings in 2a and 2b both display an elongated E-Te bond as a consequence of an interaction between tellurium and the iodide anion. One-electron reduction of 2a and 2b with cobaltocene produces the neutral dimers (EP (i)Pr 2NP (i)Pr 2Te-) 2 ( 3a, E = S; 3b, E = Se), which are connected exclusively through a Te-Te bond. Two-electron reduction of 2a and 2b with 2 equiv of cobaltocene regenerates the corresponding dichalcogenidoimidodiphosphinate anions as ion-separated cobaltocenium salts Cp 2Co[(EP (i)Pr 2)(TeP (i)Pr 2)N] ( 4a, E = S; 4b, E = Se). The ditellurido analogue Cp 2Co[(TeP (i)Pr 2) 2N] ( 4c) has been prepared in the same manner for comparison. Density functional theory calculations reveal that the preferential interaction of the iodide anion with tellurium is determined by the polarization of the lowest unoccupied molecular orbital [sigma*(E-Te)] of the cations in 2a and 2b toward tellurium and that the formation of the dimers 3a and 3b with a central Te-Te linkage is energetically more favorable than the structural isomers with either E-Te or E-E bonds. Compounds 2a, 2b, 3a, 3b, 4a, 4b, and 4c have been characterized in solution by multinuclear NMR spectroscopy and in the solid state by X-ray crystallography.  相似文献   

3.
Four possible isomers of the Ti2C80 metallofullerene are discussed in detail at the B3LYP DFT level of theory: two isomers in Ti2@C80 formula with two Ti atoms encapsulated inside a C80 cage and the other two in Ti2C2@C78 formula with a Ti2C2 cluster involved inside a C78 cage. In the encaged Ti2C2 cluster, there are end-on and side-on C2 bridging modes into the two Ti atoms. The optimized end-on cluster has a linear Ti-C-C-Ti array, whereas the side-on cluster has a butterfly-like structure where the two Ti atoms and the C2 unit do not lie in a plane. DFT calculations show that the Ti2C2@C78 molecule with the end-on Ti2C2 cluster is energetically most favorable in the four isomers. Stabilities of the Ti2C80 molecules are essentially dominated by Ti binding sites inside fullerene cages. The Ti atoms bind over the hexagon rings in preference to a junction between hexagon and pentagon rings. In the Ti2C2@C78 molecules, orbital interactions between the Ti2C2 cluster and the outer cage play a significant role in determining the C2 bridging modes into the dititanium center and their relative stabilities.  相似文献   

4.
Reduction of Fe2(mu-S2C3H6)(CO)6 (1) in tetrahydrofuran with 1 equiv of decamethylcobaltocene (Cp*2Co) affords a tetranuclear dianion 2. The IR spectra of samples of 2 in solution and in the solid state exhibit a band at 1736 cm(-1), suggestive of the presence of a bridging carbonyl (CO) ligand. X-ray crystallography confirms that the structure of 2 consists of two Fe2 units bridged by a propanedithiolate moiety formulated as [Fe2(mu-S2C3H6)(CO)5(SCH2CH2CH2-mu-S)Fe2(mu-CO)(CO)6](2-). One of the Fe2 units has a bridging CO ligand and six terminal CO ligands. The second subunit exhibits a bridging propanedithiolate moiety. One CO ligand has been replaced by a terminal thiolate ligand, replicating the basic architecture of Fe-only hydrogenases. The reduction reaction can be reversed by treatment of 2 with 2 equiv of [Cp2Fe][PF6], reforming complex 1 in near-quantitative yield. Complex 2 can also be oxidized by acids such as p-toluenesulfonic acid, regenerating complex 1 and forming H2.  相似文献   

5.
New cationic, pentacoordinate complexes [(TPA)Rh1(ethene)]+, [1a]+, and [(MeTPA)Rh1(ethene)]+, [1b]+, have been prepared (TPA = N,N,N-tri(2-pyridylmethyl)amine, MeTPA = N-[(6-methyl-2-pyridyl)-methyl]-N,N-di(2-pyridylmethyl)amine). Complex [1a]+ is selectively converted by aqueous HCl to [(TPA)RhIII-(ethyl)Cl]+, [2a]+. The same reaction with [1b]+ results in the [(MeTPA)RhIII-(ethyl)Cl]+ isomers [2b]+ and [2c]+. Treatment of [1a]+ and [1b]+ with aqueous H2O2 results in a selective oxygenation to the unsubstituted 2-rho-da(III)oxetanes (1-oxa-2-rhoda(III)cyclo-butanes) [(TPA)RhIII(kappa2-C,O-2-oxyethyl)]+, [3a]+, and [(MeTPA)RhIII(kappa2-C,O-2-oxyethyl)]+, [3b]+. The reactivity of 2-rhodaoxetanes [3a]+ and [3b]+ is dominated by the nucleophilic character of their 2-oxyethyl oxygen. Reaction of [3a]+ and [3b]+ with the non-coordinating acid HBAr(f)4 results in the dicationic protonated 2-rhodaoxetanes [(TPA)RhIII(kappa2-2-hydroxyethyl)]2+, [4a]2+, and [(MeTPA)RhIII(kappa2-2-hydroxyethyl)]2+, [4b]2+. These eliminate acetaldehyde at room temperature, probably via a coordinatively unsaturated kappa1-2-hydroxyethyl complex. In acetonitrile, complex [4a]2+ is stabilised as [(TPA)-RhIII(kappa1-2-hydroxyethyl)(MeCN)]2+, [5a]2+, whereas the MeTPA analogue [4b]2+ continues to eliminate acetaldehyde. Reaction of [3a]+ with NH4Cl and Mel results in the coordinatively saturated complexes [(TPA)RhIII(kappa1-2-hydroxyethyl)(Cl)]+, [6a]+, and [(TPA)-RhIII(kappa1-2-methoxyethyl)(I)+, [7a]+, respectively. Reaction of [3a]+ with NH4+ in MeCN results in formation of the dicationic metallacyclic amide [(TPA)-RhIII [kappa2-O,C-2-(acetylamino)ethyl]]2+, [9]2+, via the intermediates [4a]2+, [5a]2+ and the metallacyclic iminoester [(TPA)RhIII[kappa2-N,C-2-(acetimidoyloxy)ethyl]]2+, [8]2+. The observed overall conversion of the [Rh(I)(ethene)] complex [1a]+ to the metallacyclic amide [9]2+ via 2-rhodaoxetane [3a]+, provides a new route for the amidation of a [RhI(ethene)] fragment.  相似文献   

6.
A diboron compound with both 3-coordinate boron and 4-coordinate boron centers, (5-BMes2-2-ph-py)BMes2 (1) and its monoboron analogue, (2-ph-py)BMes2 (2) have been synthesized. Both compounds are luminescent but have a high sensitivity toward light. UV and ambient light cause both compounds to isomerize to 1a and 2a, respectively, via the formation of a C-C bond between a mesityl and the phenyl group, accompanied by a drastic color change from yellow or colorless to dark olive green or dark blue. The structures of 1a and 2a were established by 2D NMR experiments and geometry optimization by DFT calculations. Both 1a and 2a can thermally reverse back to 1 and 2 via the breaking of a C-C bond, with the activation barrier being 107 and 110 kJ/mol, respectively. The N,C-chelate ligands in 1 and 2 were found to play a key role in promoting this unusual and reversible photo-thermal isomerization process on a tetrahedral boron center. Reactions with oxygen molecules convert 1a and 2a to 5-BMes2-2-[(2-Mes)-ph]-pyridine (1b) and 2-(2-Mes)-ph-pyridine (2b), respectively.  相似文献   

7.
Four new nickel(II) complexes, [Ni(2)L(2)(NO(2))(2)]·CH(2)Cl(2)·C(2)H(5)OH, 2H(2)O (1), [Ni(2)L(2)(DMF)(2)(μ-NO(2))]ClO(4)·DMF (2a), [Ni(2)L(2)(DMF)(2)(μ-NO(2))]ClO(4) (2b) and [Ni(3)L'(2)(μ(3)-NO(2))(2)(CH(2)Cl(2))](n)·1.5H(2)O (3) where HL = 2-[(3-amino-propylimino)-methyl]-phenol, H(2)L(') = 2-({3-[(2-hydroxy-benzylidene)-amino]-propylimino}-methyl)-phenol and DMF = N,N-dimethylformamide, have been synthesized starting with the precursor complex [NiL(2)]·2H(2)O, nickel(ii) perchlorate and sodium nitrite and characterized structurally and magnetically. The structural analyses reveal that in all the complexes, Ni(II) ions possess a distorted octahedral geometry. Complex 1 is a dinuclear di-μ(2)-phenoxo bridged species in which nitrite ion acts as chelating co-ligand. Complexes 2a and 2b also consist of dinuclear entities, but in these two compounds a cis-(μ-nitrito-1κO:2κN) bridge is present in addition to the di-μ(2)-phenoxo bridge. The molecular structures of 2a and 2b are equivalent; they differ only in that 2a contains an additional solvated DMF molecule. Complex 3 is formed by ligand rearrangement and is a one-dimensional polymer in which double phenoxo as well as μ-nitrito-1κO:2κN bridged trinuclear units are linked through a very rare μ(3)-nitrito-1κO:2κN:3κO' bridge. Analysis of variable-temperature magnetic susceptibility data indicates that there is a global weak antiferromagnetic interaction between the nickel(ii) ions in four complexes, with exchange parameters J of -5.26, -11.45, -10.66 and -5.99 cm(-1) for 1, 2a, 2b and 3, respectively.  相似文献   

8.
(R)-[1-(Dimethylamino)ethyl]benzene reacts with nBuLi in a 1:1 molar ratio in pentane to quantitatively yield a unique hetero-aggregate (2 a) containing the lithiated arene, unreacted nBuLi, and the complexed parent arene in a 1:1:1 ratio. As a model compound, [Li(4)(C(6)H(4)CH(Me)NMe(2)-2)(2)(nBu)(2)] (2 b) was prepared from the quantitative redistribution reaction of the parent lithiated arene Li(C(6)H(4)CH(Me)NMe(2)-2) with nBuLi in a 1:1 molar ratio. The mono-Et(2)O adduct [Li(4)(C(6)H(4)CH(Me)NMe(2)-2)(2)(nBu)(2)(OEt(2))] (2 c) and the bis-Et(2)O adduct [Li(4)(C(6)H(4)CH(Me)NMe(2)-2)(2)(nBu)(2)(OEt(2))(2)] (2 d) were obtained by re-crystallization of 2 b from pentane/Et(2)O and pure Et(2)O, respectively. The single-crystal X-ray structure determinations of 2 b-d show that the overall structural motifs of all three derivatives are closely related. They are all tetranuclear Li aggregates in which the four Li atoms are arranged in an almost regular tetrahedron. These structures can be described as consisting of two linked dimeric units: one Li(2)Ar(2) dimer and a hypothetical Li(2)nBu(2) dimer. The stereochemical aspects of the chiral Li(2)Ar(2) fragment are discussed. The structures as observed in the solid state are apparently retained in solution as revealed by a combination of cryoscopy and (1)H, (13)C, and (6)Li NMR spectroscopy.  相似文献   

9.
Alkylation of (ArNHCH2CH2){(2-C5H4N)CH2}NH with RX [RX = MeI, 4-CH2=CH(C6H4)CH2Cl) and (2-C5H5N)CH2Cl] in the presence of base has allowed access to the sterically demanding multidentate nitrogen donor ligands, {(2,4,6-Me3C6H2)NHCH2CH2}{(2-C5H4N)CH2}NMe (L1), {(2,6-Me3C6H3)NHCH2CH2}{(2-C5H4N)CH2}NCH2(C6H4)-4-CH=CH2 (L2) and (ArNHCH2CH2){(2-C5H4N)CH2}2N (Ar = 2,4-Me2C6H3 L3a, 2,6-Me2C6H3 L3b) in moderate yield. L3 can also be prepared in higher yield by the reaction of (NH2CH2CH2){(2-C5H4N)CH2}2N with the corresponding aryl bromide in the presence of base and a palladium(0) catalyst. Treatment of L1 or L2 with MCl2 [MCl2 = CoCl2.6H2O or FeCl2(THF)1.5] in THF affords the high spin complexes [(L1)MCl2](M = Co 1a, Fe 1b) and [(L2)MCl2](M = Co 2a, Fe 2b) in good yield, respectively; the molecular structure of reveals a five-coordinate metal centre with bound in a facial fashion. The six-coordinate complexes, [(L3a)MCl2](M = Co 3a, Fe 3b, Mn 3c) are accessible on treatment of tripodal L3a with MCl2. In contrast, the reaction with the more sterically encumbered leads to the pseudo-five-coordinate species [(L3b)MCl2](M = Co 4a, Fe 4b) and, in the case of manganese, dimeric [(L3b)MnCl(mu-Cl)]2 (4c); in 4a and 4b the aryl-substituted amine arm forms a partial interaction with the metal centre while in 4c the arm is pendant. The single crystal X-ray structures of , 1a, 3b.MeCN, 3c.MeCN, 4b.MeCN and 4c are described as are the solution state properties of 3b and 4b.  相似文献   

10.
Metal complexes composed of ZnCl(2) and bidentate 1,2-bis(2-methyl-5-(4-pyridyl)-3-thienyl)perfluorocyclopentene (1a) and monodentate 1-(2-methyl-5-phenyl-3-thienyl)-2-(2-methyl-5-(4-pyridyl)-3-thienyl)perfluorocyclopentene (2a) photochromic ligands were prepared. X-ray crystallographic analyses showed the formation of a coordination polymer and a discrete 2:1 complex for 1a.ZnCl(2) and 2a(2).ZnCl(2), respectively. While the 2a(2).ZnCl(2) crystal underwent photochromic reaction in the crystalline state by alternate irradiation with UV and visible light, the 1a.ZnCl(2) crystal did not show any photoreactivity. The difference in the photochromic behavior was explained by the difference in the conformation of the diarylethenes in the crystals.  相似文献   

11.
Cai H  Yu X  Chen S  Qiu H  Guzei IA  Xue ZL 《Inorganic chemistry》2007,46(19):8071-8078
M(NMe2)4 (M = Zr, 1a; Hf, 1b) and the silyl anion (SiButPh2)- (2) in Li(THF)2SiButPh2 (2-Li) were found to undergo a ligand exchange to give [M(NMe2)3(SiButPh2)2]- (M = Zr, 3a; Hf, 3b) and [M(NMe2)5]- (M = Zr, 4a; Hf, 4b) in THF. The reaction is reversible, leading to equilibria: 2 1a (or 1b) + 2 2 <--> 3a (or 3b) + 4a (or 4b). In toluene, the reaction of 1a with 2 yields [(Me2N)3Zr(SiButPh2)2]-[Zr(NMe2)5Li2(THF)4]+ (5) as an ionic pair. The silyl anion 2 selectively attacks the -N(SiMe3)2 ligand in (Me2N)3Zr-N(SiMe3)2 (6a) to give 3a and [N(SiMe3)2]- (7) in reversible reaction: 6a + 2 2 <--> 3a + 7. The following equilibria have also been observed and studied: 2M(NMe2)4 (1a; 1b) + [Si(SiMe3)3]- (8) <--> (Me2N)3M-Si(SiMe3)3 (M = Zr, 9a; Hf, 9b) + [M(NMe2)5]- (M = Zr, 4a; Hf, 4b); 6a (or 6b) + 8 <--> 9a (or 9b) + [N(SiMe3)2]- (7). The current study represents rare, direct observations of reversible amide-silyl exchanges and their equilibria. Crystal structures of 5, (Me2N)3Hf-Si(SiMe3)3 (9b), and [Hf(NMe2)4]2 (dimer of 1b), as well as the preparation of (Me2N)3M-N(SiMe3)2 (6a; 6b) are also reported.  相似文献   

12.
郭彩云  王珊娣 《有机化学》1994,14(2):171-176
本文报道在引发剂存在下, ω-氯氟烷基碘与烯丙基化合物(CH~2=CH-CH~2X, X=OH,OAC) 及乙烯基化合物CH~2=CH-OAC 发生自由基加成反应, 生成相应的加成产物Cl(CF~2)~nCH~2CHICH~2OH (2a~d), Cl(CF~2)~nCH~2CHICH~2OAC (3a~d)和Cl(CF~2)~nCH~2CHIOAC (4a~d) , 产率较好.2a~d用LiAlH~4脱碘生成Cl(CF~2)~nCH~2CH~2CH~2OH(5a~d), 反应条件温和. 2a~d与KOH-CH~3OH反应, 主要得到醇Cl(CF~2)~nCH=CHCH~2OH (6a~c), 若2a~d与NaOH-水溶液反应则得到环氧丙烷化合物. 在少量HOAC存在下, 异丙醇溶剂中, 锌粉与2a~d和3a~d反应得到消除产物Cl(CF~2)~n-CH~2CH=CH~2 (8a~d) . 4a~d与锌反应,再经KOH-CH~3OH-H~2O水解得到Cl(CF~2)~n(CH~2)~2OH(10a~d).  相似文献   

13.
A series of complexes obtained from the reaction of trans-[(CH3NH2)2PtII] with unsubstituted cytosine (CH) and its anion (C), respectively, has been prepared and isolated or detected in solution: trans-[Pt(CH3NH2)2(CH-N3)Cl]Cl.H2O (1), trans-[Pt(CH3NH2)2(CH-N3)2](ClO4)2 (1a), trans-[Pt(CH3NH2)2(C-N3)2].2H2O (1b), trans-[Pt(CH3NH2)2(CH-N3)2](ClO4)(2).2DMSO (1c), trans-[Pt(CH3NH2)2(CH-N1)2] (NO3)(2).3H2O (2a), trans-[Pt(CH3NH2)2(C-N1)2].2H2O (2b), trans-[Pt(CH3NH2)2(CH-N1)(CH-N3)](ClO4)2 (3a), trans-[Pt(CH3NH2)2(C-N1)(C-N3)] (3b), and trans-[Pt(CH3NH2)2(N1-CN3)(N3-C-N1)Cu(OH)]ClO(4).1.2H2O (4). X-ray crystal structures of all these compounds, except 3a and 3b, are reported. Complex 2a is of particular interest in that it contains the rarer of the two 2-oxo-4-amino tautomer forms of cytosine, namely that with the N3 position protonated. Since the effect of PtII on the geometry of the nucleobase is minimal, bond lengths and angles of CH in 2a reflect, to a first approximation, those of the free rare tautomer. Compared to the preferred 2-oxo-4-amino tautomer (N1 site protonated) of CH, the rare tautomer in 2a differs particularly in internal ring angles (7-11 sigma). Formation of compounds containing the rare CH tautomers on a preparative scale can be achieved by a detour (reaction of PtII with the cytosine anion, followed by cytosine reprotonation) or by linkage isomerization (N3-->N1) under alkaline reaction conditions. Surprisingly, in water and over a wide pH range, N1 linkage isomers (3a, 2a) form in considerably higher amounts than can be expected on the basis of the tautomer equilibrium. This is particularly true for the pH range in which the cytosine is present as a neutral species and implies that complexation of the minor tautomer is considerably promoted. Deprotonation of the rare CH tautomers in 2a occurs with pKa values of 6.07 +/- 0.18 (1 sigma) and 7.09 +/- 0.11 (1 sigma). This value compares with pKa 9.06 +/- 0.09 (1 sigma) (average of both ligands) in 1a.  相似文献   

14.
The guest- or solvent-induced assembly of a tetracarboxyl-cavitand 1 and a tetra(3-pyridyl)-cavitand 2 into a heterodimeric capsule 1.2 in a rim-to-rim fashion via four intermolecular CO(2)H.N hydrogen bonds has been investigated both in solution and in the solid state. In the (1)H NMR study, a 1:1 mixture of1a and 2a (R = (CH(2))(6)CH(3)) in CDCl(3) gave a mixture of various complicated aggregates, whereas this mixture in CDCl(2)CDCl(2) or p-xylene-d(10) exclusively produced the heterodimeric capsule 1a.2a. It was found that an appropriate 1,4-disubstituted-benzene is a suitable guest for inducing the exclusive formation of 1a.2a in CDCl(3). The ability of a guest to induce the formation of guest-encapsulating heterodimeric capsule, guest@(1a.2a), increased in the order p-ethyltoluene < 1-ethyl-4-methoxybenzene < or = 1-ethyl-4-iodobenzene < or = 1,4-dibromobenzene < 1-iodo-4-methoxybenzene < or= 1,4-dimethoxybenzene < or = 1,4-diiodobenzene. The (1)H NMR study revealed that a CH-halogen interaction between the inner protons of the methylene-bridge rims (-O-H(out)CH(in)-O-) of the 1a and 2a units and the halogen atoms of 1,4-dihalobenzenes and a CH-pi interaction between the methoxy protons of 1,4-dimethoxybenzene and the aromatic cavities of the 1a and 2a units play important roles in the formation of 1,4-dihalobenzene@(1a.2a) and 1,4-dimethoxybenzene@(1a.2a), respectively. A preliminary single-crystal X-ray diffraction analysis of guest@(1b.2b) (R = (CH(2))(2)Ph; guest = 1-iodo-4-methoxybenzene or p-xylene) confirmed that the guest encapsulated in 1b.2b is oriented with the long axis of the guest along the long axis of 1b.2b and that the iodo and the methoxy groups of the encapsulated 1-iodo-4-methoxybenzene are specifically oriented with respect to the cavities of the 2b and 1b units, respectively.  相似文献   

15.
Lu TT  Tsou CC  Huang HW  Hsu IJ  Chen JM  Kuo TS  Wang Y  Liaw WF 《Inorganic chemistry》2008,47(13):6040-6050
The anionic syn-/ anti-[Fe(mu-SEt)(NO) 2] 2 (-) ( 2a) were synthesized and characterized by IR, UV-vis, EPR, and X-ray diffraction. The geometry of the [Fe(mu-S) 2Fe] core is rearranged in going from [{Fe(NO) 2} (9)-{Fe(NO) 2} (9)] Roussin's red ester [Fe(mu-SEt)(NO) 2] 2 ( 1a) (Fe...Fe distance of 2.7080(5) A) to the [{Fe(NO) 2} (9)-{Fe(NO) 2} (10)] complex 2a (Fe...Fe distance of 2.8413(6) A) to minimize the degree of Fe...Fe interaction to stabilize complex 2a. On the basis of X-ray absorption (Fe K- and L-edge), EPR and SQUID, complex 2a is best described as the anionic [{Fe(NO) 2} (9)-{Fe(NO) 2} (10)] Roussin's red ester with the fully delocalized mixed-valence core. The complete bridged-thiolate cleavage yielded DNIC [(EtS) 2Fe(NO) 2] (-) ( 3a) in the reaction of 2 equiv of [EtS] (-) and complex 1a, whereas reaction of 2 equiv of [(t)BuS] (-) with [Fe(micro-S (t)Bu)(NO) 2] 2 (1b) gave DNIC [((t)BuS) 2Fe(NO) 2] (-) (3b) and the anionic Roussin's red ester [Fe(mu-S (t)Bu)(NO) 2] 2 (-) (2b) through bridged-thiolate cleavage in combination with reduction. In contrast to the inertness of DNIC 3b toward complex 1b, nucleophile DNIC 3a induces the reduction of complex 1a to produce the anionic Roussin's red ester 2a. Interestingly, dissolution of complex 3a in MeOH at 298 K finally led to the formation of a mixture of complexes 2a and 3a, in contrast to the dynamic equilibrium of complexes 3b and 1b observed in dissolution of complex 3b in MeOH. These results illustrate the aspect of how the steric structures of nucleophiles ([EtS] (-) vs [ (t)BuS] (-) and [(EtS) 2Fe(NO)2](-) vs [((t)BuS) 2Fe(NO)2] (-)) function to determine the reaction products.  相似文献   

16.
 在微波辐射条件下, 将 CuCl 快速分散到载体表面制得 CuCl/SiO2-TiO2 催化剂, 利用 X 射线衍射、透射电镜、N2 吸附-脱附、热重、H2 程序升温还原和 CO 程序升温脱附对催化剂进行了表征. 结果表明, 微波辐射制备的催化剂中 CuCl 和载体发生了强相互作用, 比传统加热制备的催化剂中形成更多的易还原铜物种, 吸附 CO 的能力更强. 在甲醇液相氧化羰基化反应中, 微波辐射制备的催化剂上甲醇转化率为 11.7%, 碳酸二甲酯选择性达 96.5%, 高于相同条件下传统加热制备催化剂的活性.  相似文献   

17.
Anaerobic reaction of Co(O2CMe)2.4H2O with the thioether-containing acyclic pyrazine amide hexadentate ligand 1,4-bis[o-(pyrazine-2-carboxamidophenyl)]-1,4-dithiobutane (H2L1) (-CH2CH2- spacer between the two pyrazine amide tridentate coordination units) furnishes [CoII(L1)].MeOH (1a) having CoN2(pyrazine)N'2(amide)S2(thioether) coordination. It exhibits an eight-line EPR spectrum, attesting to a low-spin (S = 1/2) state of CoII. A similar reaction in air, however, furnishes [CoIII(L3a)(L3b)].2MeOH (2a) (S = 0), resulting from a C-S bond cleavage reaction triggered by an acetate ion as a base, having CoN2(pyrazine)N'2(amide)S(thioether)S'(thiolate) coordination. On the other hand, the reaction of Co(O2CMe)2.4H2O with 1,4-bis[o-(pyrazine-2-carboxamidophenyl)]-1,5-dithiopentane (H2) (-CH2CH2CH2- spacer between the two pyrazine amide tridentate coordination units) in air affords a cobalt(II) complex [CoII(L2)].MeOH (1b.MeOH) (S = 1/2); its structurally characterized variety has the composition 1b.C6H6. Interestingly, 1b.MeOH undergoes facile metal-centred oxidation by aerial O2-H2O2-[Fe(eta5-C5H5)2][PF6], which led to the isolation of the corresponding cobalt(iii) complex [CoIII(L2)][ClO4] (2b). When treated with methanolic KOH, 2b affords a low-spin (S = 0) organocobalt(III) complex [Co(III)((L2')] (3). Structures of all complexes, except 1a, have been authenticated by X-ray crystallography. A five-membered chelate-ring forming ligand L1(2-) effects C-S bond cleavage and a six-membered chelate-ring forming ligand L2(2-) gives rise to Co-C bond formation, in cobalt(III)-coordinated thioether functions due to alpha C-H bond activation by the base. A rationale has been provided for the observed difference in the reactivity properties. The spectroscopic properties of the complexes have also been investigated. Cyclic voltammetry experiments in MeCN-CH2Cl2 reveal facile metal-centred reversible-to-quasireversible CoIV-CoIII (or a ligand-centred redox process; 2a), CoIII-CoII (1a, 1b.MeOH, 2a, 2b and 3), CoII-CoI (1a, 1b.MeOH, 2aand 2b), and CoI-Co0 (1a, 1b.MeOH and 2b) redox processes.  相似文献   

18.
The title compounds were prepared from the elements by reactions in sealed tantalum tubes in a high-frequency furnace. The four compounds were investigated by X-ray diffraction both on powders and single crystals, and the structures of the rhodium and platinum compounds were refined from single-crystal data: Cmcm, a = 447.68(8), b = 1131.1(2), c = 805.6(2) pm, wR2 = 0.0561, 354 F2 values for BaRhIn2; a = 452.06(8), b = 1162.4(2). c = 801.5(1) pm, wR2 = 0.1427, 362 F2 values, for BaPtIn2: with 16 variables for each refinement. The structures are isopointal to MgCuAl2 and can be considered to be a transition metal (T) filled CaIn2 type, in which the indium atoms form a distorted network like hexagonal diamond (lonsdaleite). The indium substructure is cut apart in BaTIn2 and resembles together with the transition metal atoms a two-dimensional polyanion rather than a three-dimensional polyanion as found in the compounds CaTIn2, CaTSn2, and SrTIn2. Semiempirical band structure calculations support the assumption of a two-dimensional polyanion in which the strongest interactions are found for the T-In contacts.  相似文献   

19.
The reactions between cis-Fe(dmpe)2H2 (dmpe = Me2PCH2CH2PMe2) (1) or cis-Fe(PP3)H2 (PP3 = P(CH2CH2PMe2)3) (2) and carbon dioxide (CO2), carbon disulfide (CS2), and carbonyl sulfide (COS) are investigated. At 300 K, additions of CO2 (1 atm), CS2 (2 equiv), and COS (1 atm) to 1 result in the formation of a stable transformato hydride, trans-Fe(dmpe)2(OCHO)H (3a), a trans-dithioformato hydride, trans-Fe(dmpe)2(SCHS)H (4a), and a trans-thioformato hydride, trans-Fe(dmpe)2(SCHO)H (5a), respectively. When CS2 and COS are added to cis-Fe(dmpe)2H2 at 195 K, a cis-dithioformato hydride, 4b, and a cis-thioformato hydride, 5b, respectively, are observed as the initially formed products, but there is no evidence of the corresponding cis-formato hydride upon addition of CO2 to cis-Fe(dmpe)2H2. Additions of excess CO2, CS2, and COS to 1 at lower temperatures (195-240 K) result in the formation of a trans-bis(formate), trans-Fe(dmpe)2(OCHO)2 (3b), a trans-bis(dithioformate), trans-Fe(dmpe)2(SCHS)2 (4c), and a cis-bis(thioformate), cis-Fe(dmpe)2(SCHO)2 (5c), respectively. trans-Fe(dmpe)2(SCHO)2 (5d) is prepared by the addition of excess COS at 300 K. Additions of CO2 (1 atm), CS2 (0.75 equiv), and COS (1 atm) to 2 at 300 K result in the formation of a thermally stable, geometrically constrained cis-formato hydride, cis-Fe(PP3)(OCHO)H (6a), a cis-dithioformato hydride, cis-Fe(PP3)(SCHS)H (7a), and a cis-thioformato hydride, cis-Fe(PP3)(SCHO)H (8a), respectively. Additions of excess CO2 and COS to 2 yield a cis-bis(formate), cis-Fe(PP3)(OCHO)2 (6b), and a thermally stable cis-bis(thioformate), cis-Fe(PP3)(SCHO)2 (8b), respectively. All complexes are characterized by multinuclear NMR spectroscopy, with IR spectroscopy and elemental analyses confirming structures of thermally stable complexes where possible. Complexes 3b and 5a are also characterized by X-ray crystallography.  相似文献   

20.
Wang W  Qiao J  Wang L  Duan L  Zhang D  Yang W  Qiu Y 《Inorganic chemistry》2007,46(24):10252-10260
A new type of organic-inorganic hybrid materials based on cadmium iodide (CdI2) and phenethylamine (PEA) has been synthesized and characterized. The reaction of CdI2 with PEA in a 1:2 molar ratio yields a four-coordinate hybrid material CdI2(PEA)2 (1) with extended 1D (CdI2)n chains, while the reaction of CdI2 with PEA in a 1:4 molar ratio produces a six-coordinate hybrid material CdI2(PEA)4 (2) with a discrete linear structure of CdI2 moiety. By introducing a trace amount of Na2S to the reaction for CdI2(PEA)2, we obtained a new compound [CdI2(PEA)2](CdS)0.038 (3) with uniformly doped CdS nanoparticles. Steady and transient photoluminescence studies reveal that compounds 1 and 2 exhibit bright blue (465 nm) and green (512 nm) fluorescent emissions in solid state at room temperature, respectively, while compound 3 gives a broad and complex emission ranging from 450 to 700 nm. Theoretical studies of electronic structures were carried out using density functional theory in order to gain a good understanding of the luminescent behaviors of these hybrid materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号