首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, the problem of homoclinic bifurcation accompanied by a transcritical bifurcation is investigated for high-dimensional systems. With the aid of a suitable local coordinate system, the Poincaré map is constructed. Under certain nongeneric conditions (orbit flip and inclination flip homoclinic orbits), the existence, nonexistence, coexistence and uniqueness of homoclinic and periodic orbits are studied. Some known results are extended.  相似文献   

2.
This paper is devoted to the study of generic unfolding of a degenerate heterodimensional cycle under orbit flip condition. By setting up local moving frame systems in small tubular neighborhood of unperturbed heterodimensional cycle, we construct a Poincaré return map and further obtain the bifurcation equations. Based on the bifurcation analysis, different bifurcation phenomena are discussed under small perturbations. An analytical example is also given to demonstrate our main results.  相似文献   

3.
Concerns double homoclinic loops with orbit flips and two resonant eigen- values in a four-dimensional system.We use the solution of a normal form system to construct a singular map in some neighborhood of the equilibrium,and the solution of a linear variational system to construct a regular map in some neighborhood of the double homoclinic loops,then compose them to get the important Poincarémap.A simple cal- culation gives explicitly an expression of the associated successor function.By a delicate analysis of the bifurcation equation,we obtain the condition that the original double homoclinic loops are kept,and prove the existence and the existence regions of the large 1-homoclinic orbit bifurcation surface,2-fold large 1-periodic orbit bifurcation surface, large 2-homoclinic orbit bifurcation surface and their approximate expressions.We also locate the large periodic orbits and large homoclinic orbits and their number.  相似文献   

4.
In this study a new procedure for analysis of nonlinear dynamical systems with periodically varying parameters under critical conditions is presented through an application of the Liapunov-Floquet (L-F) transformation. The L-F transformation is obtained by computing the state transition matrix associated with the linear part of the problem. The elements of the state transition matrix are expressed in terms of Chebyshev polynomials in timet which is suitable for algebraic manipulations. Application of Floquet theory and the eigen-analysis of the state transition matrix at the end of one principal period provides the L-F transformation matrix in terms of the Chebyshev polynomials. Since this is a periodic matrix, the L-F transformation matrix has a Fourier representation. It is well known that such a transformation converts a linear periodic system into a linear time-invariant one. When applied to quasi-linear equations with periodic coefficients, a dynamically similar system is obtained whose linear part is time-invariant and the nonlinear part consists of coefficients which are periodic. Due to this property of the L-F transformation, a periodic orbit in original coordinates will have a fixed point representation in the transformed coordinates. In this study, the bifurcation analysis of the transformed equations, obtained after the application of the L-F transformation, is conducted by employingtime-dependent center manifold reduction andtime-dependent normal form theory. The above procedures are analogous to existing methods that are employed in the study of bifurcations of autonomous systems. For the two physical examples considered, the three generic codimension one bifurcations namely, Hopf, flip and fold bifurcations are analyzed. In the first example, the primary bifurcations of a parametrically excited single degree of freedom pendulum is studied. As a second example, a double inverted pendulum subjected to a periodic loading which undergoes Hopf or flip bifurcation is analyzed. The methodology is semi-analytic in nature and provides quantitative measure of stability when compared to point mappings method. Furthermore, the technique is applicable also to those systems where the periodic term of the linear part does not contain a small parameter which is certainly not the case with perturbation or averaging methods. The conclusions of the study are substantiated by numerical simulations. It is believed that analysis of this nature has been reported for the first time for this class of systems.  相似文献   

5.
Resonant Homoclinic Flip Bifurcations   总被引:6,自引:0,他引:6  
This paper studies three-parameter unfoldings of resonant orbit flip and inclination flip homoclinic orbits. First, all known results on codimension-two unfoldings of homoclinic flip bifurcations are presented. Then we show that the orbit flip and inclination flip both feature the creation and destruction of a cusp horseshoe. Furthermore, we show near which resonant flip bifurcations a homoclinic-doubling cascade occurs. This allows us to glue the respective codimension-two unfoldings of homoclinic flip bifurcations together on a sphere around the central singularity. The so obtained three-parameter unfoldings are still conjectural in part but constitute the simplest, consistent glueings.  相似文献   

6.
In order to promote the development of chaos in nonlinear systems, and explore more convenient controllers for the engineering application, a four-dimensional nonlinear dynamic system with only one nonlinear term was constructed and its complex dynamic characteristics were analyzed, including the phase trajectory map, Lyapunov exponents, and so on. Furthermore, the recursive backstepping method was proposed to design a different controller; the hyperchaotic system was controlled to an equilibrium point and a periodic orbit. Theoretical analysis is in agreement with simulation results. The results show that the recursive backstepping control method can wipe off chaos, and make the hyperchaotic system achieve stable states. The control process is a smooth transition, and the transition time is short.  相似文献   

7.
基于压缩映射的混沌控制方法——CM方法被应用到小的离散神经网络,通过一个外部输入的小干扰,稳定混沌轨道嵌入在混沌吸引子内的某一不稳周期轨上。利用闭回路对技术估计欲稳定周期轨的近似位置。给出二维和三维神经网络的典型例子,通过数值模拟显示CM方法控制离散神经网络混沌行为的简单和有效性。  相似文献   

8.
非线性转子-轴承系统的周期解及近似解析表达式   总被引:2,自引:0,他引:2  
通过对普通打靶方法进行改造提出一种确定非线性系统周期轨道及周期的新型打靶算法。首先通过改变系统的时间尺度,将非线性系统周期轨道的周期显式地出现在非线性系统的系统方程中,然后对传统打靶法进行改造,将周期也作为一个参数一起参与打靶法的迭代过程,迭代过程包含对周期轨道和周期的求解,迭代过程中的增量通过优化方法选择,从而能迅速确定出系统的周期轨道及其周期。应用所求的结果结合谐波平衡方法求得了非线性系统的周期轨道的近似解析表达式,理论上通过增加谐波的阶数任何精度的周期解都可以得到。最后将该方法应用于非线性转子轴承系统,求出了在某些参数下转子的周期解及其近似解析表达式,通过与四阶Runge-Kutta数值积分结果比较,验证了方法的有效性,计算结果对于转子系统运动的定量控制有重要理论指导意义。  相似文献   

9.
The behavior of a family of dynamical systems representing the elastodynamic response of an internally pressurized, non-linearly elastic spherical membrane lying in an incompressible external fluid is governed primarily by the strain energy function for the membrane, the specific forcing function due to the internal pressure, and the viscosity of the external fluid. It is shown that such systems with an inviscid external fluid and having a constant internal pressure are integrable but not Hamiltonian. Under periodic internal loading, and for a small spherical radius and constitutive relations typical of many biological soft tissues, a periodic orbit in phase space exists near a static equilibrium. A viscous external fluid causes the periodic orbit to be an attractor. The dynamical system is robust under small loading perturbations common in normal biological systems. Rubber models, on the other hand, may admit structural catastrophes. For small initial sphere radii, a jump from one periodic orbit to another is possible for rubber models but not for the classical soft tissue models. It is dangerous, therefore, to model soft biological tissue as a rubber either mathematically or physically in experiments because the predicted instabilities may not exist in tissue.  相似文献   

10.
本文将太阳引力摄动视为受摄不规则小行星系统的组成部分,借鉴非线性振动理论中参数激励共振的概念,创新性地设计了不规则小行星平衡点附近稳定的悬停观测轨道.为了同时考虑不规则小行星引力和太阳引力, 本文采用受摄粒杆模型描述系统.通过对未扰系统平衡点以及固有频率的分析, 给出系统存在参激共振轨道的条件.再以第二类参激主共振和1:3内共振为例,采用多尺度方法求得参数激励共振轨道的稳态解, 并对稳态解的稳定性进行判断.通过受摄小行星系统的幅频响应曲线以及力频响应曲线分析了系统的非线性特性以及参数激励效应.此外, 对内共振引起的长短周期能量转移现象进行了分析.本文的研究成果可以拓展现有小行星系统周期轨道族设计方法.  相似文献   

11.
求解非线性动力系统周期解推广的打靶法   总被引:4,自引:1,他引:4  
提出一种确定非线性系统周期轨道及周期的改进打靶算法。首先通过改变系统的时间尺度,将非线性系统周期轨道的周期显式地出现在非线性系统的系统方程中,然后对传统打靶法进行改造,将周期也作为一个参数一起参入打靶法的迭代过程,从而能迅速确定出系统的周期轨道及其周期。该方法对初始迭代参数没有苛刻要求,可以用于分析强非线性系统,而且对参数激励系统同样有效,对高维系统也能迅速、准确地求得周期解。文中应用该方法对三维Rǒssler系统和八维非线性柔性转子-轴承系统的周期轨道和周期进行了求解,通过与四阶Runge-Kutta数值积分结果比较,验证了方法的有效性。  相似文献   

12.
司震  钱霙婧  杨晓东  张伟 《力学学报》2020,52(6):1774-1788
本文将太阳引力摄动视为受摄不规则小行星系统的组成部分,借鉴非线性振动理论中参数激励共振的概念,创新性地设计了不规则小行星平衡点附近稳定的悬停观测轨道.为了同时考虑不规则小行星引力和太阳引力, 本文采用受摄粒杆模型描述系统.通过对未扰系统平衡点以及固有频率的分析, 给出系统存在参激共振轨道的条件.再以第二类参激主共振和1:3内共振为例,采用多尺度方法求得参数激励共振轨道的稳态解, 并对稳态解的稳定性进行判断.通过受摄小行星系统的幅频响应曲线以及力频响应曲线分析了系统的非线性特性以及参数激励效应.此外, 对内共振引起的长短周期能量转移现象进行了分析.本文的研究成果可以拓展现有小行星系统周期轨道族设计方法.   相似文献   

13.
This paper is devoted to the persistence of periodic orbits under perturbations in dynamical systems generated by evolutionary equations, which are not smoothing in finite time, but only asymptotically smoothing. When the periodic orbit of the unperturbed system is non-degenerate, we show the existence and uniqueness of a periodic orbit (with a minimal period near the minimal period of the unperturbed problem) by using “modified” Poincaré methods. Examples of applications, including the perturbed hyperbolic Navier–Stokes equations, systems of damped wave equations and the system of second grade fluids, are given.  相似文献   

14.
We consider the hypercycle system of ODEs, which models the concentration of a set of polynucleotides in a flow reactor. Under general conditions, we prove the omega-limit set of any orbit is either an equilibrium or a periodic orbit. The existence of an orbitally asymptotic stable periodic orbit is shown for a broad class of such systems.  相似文献   

15.
The motion of the moonlet Dactyl in the binary system 243 Ida is investigated in this paper. First, periodic orbits in the vicinity of the primary are calculated, including the orbits around the equilibrium points and large-scale orbits. The Floquet multipliers' topological cases of periodic orbits are calculated to study the orbits' stabilities. During the continuation of the retrograde near-circular orbits near the equatorial plane, two period-doubling bifurcations and one Neimark–Sacker bifurcation occur one by one, leading to two stable regions and two unstable regions. Bifurcations occur at the boundaries of these regions. Periodic orbits in the stable regions are all stable, but in the unstable regions are all unstable. Moreover, many quasi-periodic orbits exist near the equatorial plane. Long-term integration indicates that a particle in a quasi-periodic orbit runs in a space like a tire. Quasi-periodic orbits in different regions have different styles of motion indicated by the Poincare sections. There is the possibility that moonlet Dactyl is in a quasi-periodic orbit near the stable region I, which is enlightening for the stability of the binary system.  相似文献   

16.
In this paper, several criteria on the existence of periodic solutions for a tethered satellite system (TSS) in an elliptical orbit, as well as the uniqueness of periodic solutions for the TSS in a circular orbit are presented on the basis of coincidence degree theory. In addition, the conditions on the global asymptotic stability of the equilibrium states for the TSS are also addressed in accordance with the Lyapunov stability theory and Barbashin–Krasovski theory.  相似文献   

17.
In this effort, a six-degree-of-freedom (DOF) model is presented for the study of a machine-tool spindle-bearing system. The dynamics of machine-tool spindle system supported by ball bearings can be described by a set of second order nonlinear differential equations with piecewise stiffness and damping due to the bearing clearance. To investigate the effect of bearing clearance, bifurcations and routes to chaos of this nonsmooth system, numerical simulation is carried out. Numerical results show when the inner race touches the bearing ball with a low speed, grazing bifurcation occurs. The solutions of this system evolve from quasi-periodic to chaotic orbit, from period doubled orbit to periodic orbit, and from periodic orbit to quasi-periodic orbit through grazing bifurcations. In addition, the tori doubling process to chaos which usually occurs in the impact system is also observed in this spindle-bearing system.  相似文献   

18.
Both the symmetric period n-2 motion and asymmetric one of a one-degree- of-freedom impact oscillator are considered.The theory of bifurcations of the fixed point is applied to such model,and it is proved that the symmetric periodic motion has only pitchfork bifurcation by the analysis of the symmetry of the Poincarémap.The numerical simulation shows that one symmetric periodic orbit could bifurcate into two antisymmet- ric ones via pitchfork bifurcation.While the control parameter changes continuously, the two antisymmetric periodic orbits will give birth to two synchronous antisymmetric period-doubling sequences,and bring about two antisymmetric chaotic attractors subse- quently.If the symmetric system is transformed into asymmetric one,bifurcations of the asymmetric period n-2 motion can be described by a two-parameter unfolding of cusp, and the pitchfork changes into one unbifurcated branch and one fold branch.  相似文献   

19.
In this paper, we give a detailed study of the stable region in discrete-time FitzHugh–Nagumo delayed excitable Systems, which can be divided into two parts: one is independent of delay and the other is dependent on delay. Two different new states are to be observed, which are new steady states (equilibria-the excitable FitzHugh–Nagumo) or limit cycles/higher periodic orbits (the FitzHugh–Nagumo oscillators) as the origin loses its stability, and usually, one is synchronized and the other asynchronized. We also find out that there exist critical curves through which there occur fold bifurcations, flip bifurcations, Neimark–Sacker bifurcations and even higher-codimensional bifurcations etc. It is also shown that delay can play an important role in rich dynamics, such as the occurrence of chaos or not, by means of Lyapunov exponents, Lyapunov dimensions, and the sensitivity to the initial conditions. Multistability phenomena are also discussed including the coexistence of synchronized and asynchronized oscillators, or synchronized/asynchronized oscillators and multiple stable nontrivial equilibria etc.  相似文献   

20.
A monotone system of ordinary differential equations is considered. It is shown that the omega limit set of a bounded trajectory of this system contains an equilibrium point or a nonconstant periodic orbit. As an application, a four-dimensional system of ordinary differential equations of Lotka-Volterra type is presented. It is shown that if the interior equilibrium point of this system is unstable, then a periodic orbit is contained in the omega limit set of its bounded trajectories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号