首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
We present a general mechanism to establish the existence of diffusing orbits in a large class of nearly integrable Hamiltonian systems. Our approach is based on following the “outer dynamics” along homoclinic orbits to a normally hyperbolic invariant manifold. The information on the outer dynamics is encoded by a geometrically defined “scattering map.” We show that for every finite sequence of successive iterations of the scattering map, there exists a true orbit that follows that sequence, provided that the inner dynamics is recurrent. We apply this result to prove the existence of diffusing orbits that cross large gaps in a priori unstable models of arbitrary degrees of freedom, when the unperturbed Hamiltonian is not necessarily convex and the induced inner dynamics is not necessarily a twist map, and the perturbation satisfies explicit conditions that are generic. We also mention several other applications where this mechanism is easy to verify (analytically or numerically), such as the planar elliptic restricted three-body problem and the spatial circular restricted three-body problem. Our method differs, in several crucial aspects, from earlier works. Unlike the well-known “two-dynamics” approach, the method we present here relies on the outer dynamics alone. There are virtually no assumptions on the inner dynamics, such as on existence of its invariant objects (e.g., primary and secondary tori, lower-dimensional hyperbolic tori, and their stable/unstable manifolds, Aubry-Mather sets), which are not used at all. © 2019 Wiley Periodicals, Inc.  相似文献   

2.
We consider periodic perturbations of conservative systems. The unperturbed systems are assumed to have two nonhyperbolic equilibria connected by a heteroclinic orbit on each level set of conservative quantities. These equilibria construct two normally hyperbolic invariant manifolds in the unperturbed phase space, and by invariant manifold theory there exist two normally hyperbolic, locally invariant manifolds in the perturbed phase space. We extend Melnikov’s method to give a condition under which the stable and unstable manifolds of these locally invariant manifolds intersect transversely. Moreover, when the locally invariant manifolds consist of nonhyperbolic periodic orbits, we show that there can exist heteroclinic orbits connecting periodic orbits near the unperturbed equilibria on distinct level sets. This behavior can occur even when the two unperturbed equilibria on each level set coincide and have a homoclinic orbit. In addition, it yields transition motions between neighborhoods of very distant periodic orbits, which are similar to Arnold diffusion for three or more degree of freedom Hamiltonian systems possessing a sequence of heteroclinic orbits to invariant tori, if there exists a sequence of heteroclinic orbits connecting periodic orbits successively.We illustrate our theory for rotational motions of a periodically forced rigid body. Numerical computations to support the theoretical results are also given.  相似文献   

3.
The numerical study of Dynamical Systems leads to obtain invariant objects of the systems such as periodic orbits, invariant tori, attractors and so on, that helps to the global understanding of the problem. In this paper we focus on the rigorous computation of periodic orbits and their distribution on the phase space, which configures the so called skeleton of the system. We use Computer Assisted Proof techniques to make a rigorous proof of the existence and the stability of families of periodic orbits in two-degrees of freedom Hamiltonian systems, which provide rigorous skeletons of periodic orbits. To that goal we show how to prove the existence and stability of a huge set of discrete initial conditions of periodic orbits, and later, how to prove the existence and stability of continuous families of periodic orbits. We illustrate the approach with two paradigmatic problems: the Hénon–Heiles Hamiltonian and the Diamagnetic Kepler problem.  相似文献   

4.
We consider hyperbolic tori of three degrees of freedom initially hyperbolic Hamiltonian systems. We prove that if the stable and unstable manifold of a hyperbolic torus intersect transversaly, then there exists a hyperbolic invariant set near a homoclinic orbit on which the dynamics is conjugated to a Bernoulli shift. The proof is based on a new geometrico-dynamical feature of partially hyperbolic systems, the transversality-torsion phenomenon, which produces complete hyperbolicity from partial hyperbolicity. We deduce the existence of infinitely many hyperbolic periodic orbits near the given torus. The relevance of these results for the instability of near-integrable Hamiltonian systems is then discussed. For a given transition chain, we construct chain of hyperbolic periodic orbits. Then we easily prove the existence of periodic orbits of arbitrarily high period close to such chain using standard results on hyperbolic sets.  相似文献   

5.
In this paper we give two applications of the odd symplectic group to the study of the linear Poincaré maps of a periodic orbits of a Hamiltonian vector field, which cannot be obtained using the standard symplectic theory. First we look at the geodesic flow. We show that the period of the geodesic is a noneigenvalue modulus of the conjugacy class in the odd symplectic group of the linear Poincaré map. Second, we study an example of a family of periodic orbits, which forms a folded Robinson cylinder. The stability of this family uses the fact that the unipotent odd symplectic Poincaré map at the fold has a noneigenvalue modulus.  相似文献   

6.
It was known to Poincaré that a non-degenerate periodic orbit in a Hamiltonian system persists to nearby energy-levels. In this Note, we consider the analogous problem for relative periodic orbits in symmetric Hamiltonian systems. We show that non-degenerate relative periodic orbits also persist when shifting to nearby values of the energy-momentum map, under the hypothesis that the group of symmetries acts freely.  相似文献   

7.
The paper studies a codimension-4 resonant homoclinic bifurcation with one orbit flip and two inclination flips, where the resonance takes place in the tangent direction of homoclinic orbit.Local active coordinate system is introduced to construct the Poincar′e returning map, and also the associated successor functions. We prove the existence of the saddle-node bifurcation, the perioddoubling bifurcation and the homoclinic-doubling bifurcation, and also locate the corresponding 1-periodic orbit, 1-homoclinic orbit, double periodic orbits and some 2n-homoclinic orbits.  相似文献   

8.
In 1994, Jürgen Moser generalized Hénon’s area-preserving quadratic map to obtain a normal form for the family of four-dimensional, quadratic, symplectic maps. This map has at most four isolated fixed points. We show that the bounded dynamics of Moser’s six parameter family is organized by a codimension-three bifurcation, which we call a quadfurcation, that can create all four fixed points from none.The bounded dynamics is typically associated with Cantor families of invariant tori around fixed points that are doubly elliptic. For Moser’s map there can be two such fixed points: this structure is not what one would expect from dynamics near the cross product of a pair of uncoupled Hénon maps, where there is at most one doubly elliptic point. We visualize the dynamics by escape time plots on 2d planes through the phase space and by 3d slices through the tori.  相似文献   

9.
In this paper we connect algebraic properties of the pair-of-pants product in local Floer homology and Hamiltonian dynamics. We show that for an isolated periodic orbit, the product is non-uniformly nilpotent and use this fact to give a simple proof of the Conley conjecture for closed manifolds with aspherical symplectic form. More precisely, we prove that on a closed symplectic manifold, the mean action spectrum of a Hamiltonian diffeomorphism with isolated periodic orbits is infinite.  相似文献   

10.
We consider a numerical method based on the so-called “orthogonality condition” for the approximation and continuation of invariant tori under flows. The basic method was originally introduced by Moore [Computation and parameterization of invariant curves and tori, SIAM J. Numer. Anal. 15 (1991) 245–263], but that work contained no stability or consistency results. We show that the method is unconditionally stable and consistent in the special case of a periodic orbit. However, we also show that the method is unstable for two-dimensional tori in three-dimensional space when the discretization includes even numbers of points in both angular coordinates, and we point out potential difficulties when approximating invariant tori possessing additional invariant sub-manifolds (e.g., periodic orbits). We propose some remedies to these difficulties and give numerical results to highlight that the end method performs well for invariant tori of practical interest.  相似文献   

11.
We study relative periodic orbits (i.e. time-periodic orbits in a frame rotating at constant velocity) in a class of triatomic Euclidean-invariant (planar) Hamiltonian systems. The system consists of two identical heavy atoms and a light one, and the atomic mass ratio is treated as a continuation parameter. Under some nondegeneracy conditions, we show that a given family of relative periodic orbits existing at infinite mass ratio (and parametrized by phase, rotational degree of freedom and period) persists for sufficiently large mass ratio and for nearby angular velocities (this result is valid for small angular velocities). The proof is based on a method initially introduced by Sepulchre and MacKay [J.-A. Sepulchre, R.S. MacKay, Localized oscillations in conservative or dissipative networks of weakly coupled autonomous oscillators, Nonlinearity 10 (1997) 679–713] and further developed by Muñoz-Almaraz et al. [F.J. Muñoz-Almaraz, et al., Continuation of periodic orbits in conservative and Hamiltonian systems, Physica D 181 (2003) 1–38] for the continuation of normal periodic orbits in Hamiltonian systems. Our results provide several types of relative periodic orbits, which extend from small amplitude relative normal modes [J.-P. Ortega, Relative normal modes for nonlinear Hamiltonian systems, Proc. Roy. Soc. Edinburgh Sect. A 133 (2003) 665–704] up to large amplitude solutions which are not restrained to a small neighborhood of a stable relative equilibrium. In particular, we show the existence of large amplitude motions of inversion, where the light atom periodically crosses the segment between heavy atoms. This analysis is completed by numerical results on the stability and bifurcations of some inversion orbits as their angular velocity is varied.  相似文献   

12.
The simplest NMS flow is a polar flow formed by an attractive periodic orbit and a repulsive periodic orbit as limit sets.In this paper we show that the only orientable,simple,compact,3-dimensional manifolds without boundary that admit an NMS flow with none or one saddle periodic orbit are lens spaces. We also see that when a fattened round handle is a connected sum of tori, the corresponding flow is also a trivial connected sum of flows.  相似文献   

13.
周期流形的不变环面和次调和分支   总被引:2,自引:0,他引:2  
朱德明  韩茂安 《数学学报》1998,41(4):749-756
本文通过精华Floquet方法在周期流形的周期轨道邻域建立起适当的局部坐标,然后应用平均法和积分流形及Fenichel不变流形理论来证明不变环面和次调和轨道的存在性和法向双曲性.大多数传统的假设被放弃,而大多数已知的结果被推广.文中还给出了一个例子作为应用  相似文献   

14.
15.
Gutzwiller’s famous semiclassical trace formula plays an important role in theoretical and experimental quantum mechanics with tremendous success. We review the physical derivation of this deep periodic orbit theory in terms of the phase space formulation with a view toward the Hamiltonian dynamical systems. The Maslov phase appearing in the trace formula is clarified by Meinrenken as Conley–Zehnder index for periodic orbits of Hamiltonian systems. We also survey and compare various versions of Maslov indices to establish this fact. A refinement and improvement to Conley–Zehnder’s index theory in which we will recall all essential ingredients is the Maslov-type index theory for symplectic paths developed by Long and his collaborators. It would shed new light on the computations and understandings of the semiclassical trace formula. The insights in Gutzwiller’s work also seems plausible for the studies of Hamiltonian systems.  相似文献   

16.
We show that in conservative systems each non-degenerate homoclinic orbit asymptotic to a hyperbolic equilibrium possesses an associated family of periodic orbits. The family is parametrized by the period, and the periodic orbits accumulate on the homoclinic orbit as the period tends to infinity. A similar result holds for symmetric homoclinic orbits in reversible systems. Our results extend earlier work by Devaney and Henrard, and provide a positive answer to a conjecture of Strömgren. We present a unified approach to both the conservative and the reversible case, based on a technique introduced recently by X.-B. Lin.Dedicated to Prof. Klaus Kirchgässner on the occasion of his sixtieth birthday  相似文献   

17.
This paper discusses the existence and multiplicity of periodic orbits of Hamiltonian systems on symmetric positive-type hypersurfaces. We prove that each such energy hypersurface carries at least one symmetric periodic orbit. Under some suitable pinching conditions, we also get an existence result of multiple symmetric periodic orbits.  相似文献   

18.
This paper is a continuation to our work (Xu et al. in Ann Henri Poincaré 18(1):53–83, 2017) concerning the persistence of lower-dimensional tori on resonant surfaces of a multi-scale, nearly integrable Hamiltonian system. This type of systems, being properly degenerate, arise naturally in planar and spatial lunar problems of celestial mechanics for which the persistence problem ties closely to the stability of the systems. For such a system, under certain non-degenerate conditions of Rüssmann type, the majority persistence of non-resonant tori and the existence of a nearly full measure set of Poincaré non-degenerate, lower-dimensional, quasi-periodic invariant tori on a resonant surface corresponding to the highest order of scale is proved in Han et al. (Ann Henri Poincaré 10(8):1419–1436, 2010) and Xu et al. (2017), respectively. In this work, we consider a resonant surface corresponding to any intermediate order of scale and show the existence of a nearly full measure set of Poincaré non-degenerate, lower-dimensional, quasi-periodic invariant tori on the resonant surface. The proof is based on a normal form reduction which consists of a finite step of KAM iterations in pushing the non-integrable perturbation to a sufficiently high order and the splitting of resonant tori on the resonant surface according to the Poincaré–Treshchev mechanism.  相似文献   

19.
20.
Integrable hyperbolic mappings are constructed within a scheme presented by Suris. The Cosh map is a singular map, of which fixed point is unstable. The global behavior of periodic orbits of the Sinh map is investigated referring to the Poincaré–Birkhoff resonance condition. Close to the fixed point, the periodicity is indeed determined from the Poincaré–Birkhoff resonance condition. Increasing the distance from the fixed point, the orbit is affected by the nonlinear effect and the average periodicity varies globally. The Fourier transformation of the individual orbits determines overall spectrum of global variation of the periodicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号