首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The initial step for silicate and aluminosilicate condensation is studied in water in the presence of a realistic tetrapropylammonium template under basic conditions. The model corresponds to the synthesis conditions of ZSM5. The free energy profile for the dimer formation ((OH)(3)Si-O-Si-(OH)(2)O(-) or [(OH)(3)Al-O-Si-(OH)(3)](-)) is calculated with ab initio molecular dynamics and thermodynamic integration. The Si-O-Si dimer formation occurs in a two-step manner with an overall free energy barrier of 75 kJ mol(-1). The first step is associated with the Si-O bond formation and results in an intermediate with a five-coordinated Si, and the second one concerns the removal of the water molecule. The template is displaced away from the Si centres upon dimer formation, and a shell of water molecules is inserted between the silicate and the template. The main effect of the template is to slow down the backward hydrolysis reaction with respect to the condensation one. The Al-O-Si dimer formation first requires the formation of a metastable precursor state by proton transfer from Si(OH)(4) to Al(OH)(4)(-) mediated by a solvent molecule. It then proceeds through a single step with an overall barrier of 70 kJ mol(-1). The model with water molecules explicitly included is then compared to a simple calculation using an implicit continuum model for the solvent. The results underline the importance of an explicit and dynamical treatment of the water solvent, which plays a key role in assisting the reaction.  相似文献   

2.
Optimal geometries, charge distributions, bond analysis, changes of Gibbs free energy, entropies and enthalpies of hydration, and hydrolysis reactions for mononuclear species of Zn(2+) including hydrated and hydrolysis complexes were investigated using quantum chemical calculations in the gas phase. Optimized geometrical structures showed that the stable hydrated and hydrolysis zinc species without outer-sphere water molecules were Zn(H(2)O)(6)(2+), Zn(OH)(H(2)O)(3)(+), Zn(OH)(2)(H(2)O)(2), Zn(OH)(3)(-), and Zn(OH)(4)(2-). Results of NPA (Natural Population Analysis) indicated that the charge on the Zn atom of the hydrated ions decreased but the charge on the zinc atom of the hydrolysis species increased with the increase of inner-sphere water molecules. NBO (Natural Bond Orbital) analyses demonstrated that hydrated and hydrolysis species of zinc were mainly electrostatic bonding compounds. Calculations of reaction energies indicated that inner-sphere water molecules became more unfavorable as the hydrolysis increased. Stepwise hydrolysis equilibrium constants decreased successively and the order remained unchanged when the inner-sphere dehydration occurred.  相似文献   

3.
Tetraethoxysilane (TEOS) is widely used to synthesize siliceous material by the sol–gel process. However, there is still some disagreement about the nature of the limiting step in the hydrolysis and condensation reactions. The goal of this research was to measure the variation in the concentration of intermediates formed in the acid-catalyzed hydrolysis by 29Si NMR spectroscopy, to model the reactions, and to obtain the rate constants and the activation energy for the hydrolysis and early condensation steps. We studied the kinetics of TEOS between pH 3.8 and 4.4, and four temperature values in the range of 277.2–313.2?K, with a TEOS:ethanol:water molar ratio of 1:30:20. Both hydrolysis and the condensation rate speeded up with the temperature and the concentration of oxonium ions. The kinetic constants for hydrolysis reactions increased in each step kh1?<?kh2?<?kh3?<?kh4, but the condensation rate was lower for dimer formation than for the formation of the fully hydrolyzed Si(OH)4. The system was described according to 13 parameters: six of them for the kinetic constants estimated at 298.2?K, six to the activation energies, and one to the equilibrium constant for the fourth hydrolysis. The mathematical model shows a steady increase in the activation energy from 34.5?kJ?mol?1 for the first hydrolysis to 39.2?kJ?mol?1 in the last step. The activation energy for the condensation reaction from Si(OH)4 was ca. 10?kJ?mol?1 higher than the largest activation energy in the hydrolytic reactions. The decrease in the net positive charge on the Si atom contributes to the protonation of the ethoxy group and makes it a better leaving group.  相似文献   

4.
Molecular orbital energy minimizations were performed with the B3LYP/6-31G(d) method on a [((OH)3SiO)3SiOH-(H3O+).4(H2O)] cluster to follow the reaction path for hydrolysis of an Si-O-Si linkage via proton catalysis in a partially solvated system. The Q3 molecule was chosen (rather than Q2 or Q1) to estimate the maximum activation energy for a fully relaxed cluster representing the surface of an Al-depleted acid-etched alkali feldspar. Water molecules were included in the cluster to investigate the influence of explicit solvation on proton-transfer reactions and on the energy associated with hydroxylating the bridging oxygen atom (Obr). Single-point energy calculations were performed with the B3LYP/6-311+G(d,p) method. Proton transfer from the hydronium cation to an Obr requires sufficient energy to suggest that the Si-(OH)-Si species will occur only in trace quantities on a silica surface. Protonation of the Obr lengthens the Si-Obr bond and allows for the formation of a pentacoordinate Si intermediate ([5]Si). The energy required to form this species is the dominant component of the activation energy barrier to hydrolysis. After formation of the pentacoordinate intermediate, hydrolysis occurs via breaking the [5]Si-(OH)-Si linkage with a minimal activation energy barrier. A concerted mechanism involving stretching of the [5]Si-(OH) bond, proton transfer from the Si-(OH2)+ back to form H3O+, and a reversion of [5]Si to tetrahedral coordination was predicted. The activation energy for Q3Si hydrolysis calculated here was found to be less than that reported for Q3Si using a constrained cluster in the literature but significantly greater than the measured activation energies for the hydrolysis of Si-Obr bonds in silicate minerals. These results suggest that the rate-limiting step in silicate dissolution is not the hydrolysis of Q3Si-Obr bonds but rather the breakage of Q2 or Q1Si-Obr bonds.  相似文献   

5.
Liquid-state 29Si NMR was used to investigate the hydrolysis and condensation kinetics of ammonia-catalyzed tetraethoxysilane (TEOS) in methanol system. The reactive rate constants were calculated by applying first-order reaction approximation and the steady state approximation theory. The reaction orders with respect to TEOS, ammonia and water were derived, as well as the activation energies and the Arrhenius constants. It was found that the formation of intermediate species Si(OH)(OEt)3 was the rate-limiting step and its reaction rate equation was r TEOS=7.41×10−3[TEOS][NH3]0.333[H2O]0.227. Higher reactive temperature benefited the hydrolysis of TEOS. The results presented here indicated quantificationally that the formation of colloidal SiO2 particles was controlled by the initial hydrolysis of TEOS.  相似文献   

6.
The chemical species of silica in NaCl solutions of different concentrations were identified by FAB-MS (fast atom bombardment mass spectrometry). The basic structures of silica species, such as cyclic pentamer (Si5 (OH)9O6-), linear pentamer (Sis(OH)11O5-), cyclic hexamer (Si6(OH)9O8-, Si6(OH)11O7-) and linear hexamer (Si6(OH)14 O6-), were identified, in addition to dimer (Si2(OH)5O2-), trimer (Si3(OH)7O3-) and cyclic tetramer (Si4(OH)7O5-). The patterns of changes of the peak intensities of the silicate complexes relative to the dimer with increasing NaCl concentration were classified into two types: that represented by linear silicate complexes and the other by cyclic silicate complexes. The differences in the type of chemical species and their changes according to the NaCl concentration reflect the number of bonds necessary for polymerization and hydrolysis of the silica complexes. The differences between the linear and the cyclic silicate type have some implications on the dissolution mechanism of silicate complexes, the hydration of the molecules and the equilibrium between solubility, hydrolysis, polymerization and the salting-out effect in NaCl solution.  相似文献   

7.
张学鹏  王红艳  郑浩铨  张伟  曹睿 《催化学报》2021,42(8):1253-1268
随着化石燃料的不断消耗和生存环境的日益恶化,可再生、清洁且环境友好的新能源逐渐受到广泛关注与利用.太阳能作为一种洁净的可再生能源,在自然界中,植物可以通过光合作用将太阳能转换成化学能.在该过程中,水分子在光系统II中被氧化而释放出氧气,伴随生成的质子和电子进一步将二氧化碳转化为蕴含生物质能的碳水化合物.在光系统II中,叶绿素P680被光照激发生成阳离子自由基P680·+,其具有很强的氧化能力,可以从附近的析氧中心中夺取电子.析氧中心通过这一过程失去4个电子,可以将两分子水氧化生成一分子氧气和4个质子.作为水裂解的半反应之一,水氧化在热力学方面需要很多能量来断裂4个O-H键(ΔE=1.23 V vs.NHE),在动力学方面涉及4个氢原子与2个氧原子的重组以及氧气的释放,因而水氧化析氧是一个非常缓慢的过程,如何高效稳定地催化水氧化一直是人们研究的热点和难点.研究发现,自然界中存在的析氧中心为Mn4CaO(x)的钙锰簇合物,在水氧化过程中生成的Mn=O物种可以被游离的水分子亲核进攻形成O-O键,也可以与桥连μ-O(H)反应生成O-O键.通过对析氧中心持续的研究,在过去几十年中设计合成了一系列具有水氧化催化活性的基于金属配合物的分子催化剂.分子催化剂催化水氧化一般主要分为金属-氧物种的演化过程以及O-O成键过程.通常,金属-氧物种可以通过失电子或质子耦合的失电子过程逐步生成高价态的金属-氧物种,其引发的O-O成键过程通常是水氧化催化循环的决速步骤.基于之前的研究成果,目前主要报道了五种不同的O-O成键机理:(1)水亲核进攻金属-氧物种的WNA机理,(2)金属-氧自由基耦合的I2M机理,(3)金属-羟基自由基耦合的HC机理,(4)分子内进攻桥连氧的IOC机理以及(5)氧化还原异构的RI机理.本文综述了过去几十年水氧化分子催化剂的发展,总结了贵金属钌和铱配合物到第一过渡金属锰、铁、钴、镍和铜配合物催化水氧化过程中金属-氧物种的生成与演化,重点阐述了引发O-O成键过程的高价态金属-氧物种的种类及其不同的O-O成键机理.重点总结了O-O成键中WNA机理与I2M机理的异同,并阐述了催化剂设计对WNA与I2M机理选择性的影响.通过对金属-氧物种种类和O-O成键机理的总结,将有助于进一步设计合成高效稳定的水氧化分子催化剂.  相似文献   

8.
The effects of catalysts, pH and reaction conditions on the course of the hydrolysis and condensation of ETS40 (ethyl silicate 40), and on the composition of the reaction products were studied with the aid of gas and gel chromatography, potentiometry and gelation tests. Strong acids (HCl, HClO4, HNO3, H2SO4, p-toluenesulphonic acid), weak acids (Cl3, CCOOH, ClCH2COOH, (COOH)2, CH3COOH and HCOOH) and bases (LiOH, NH4,OH) were used as catalysts.

The hydrolysis rate increased with increasing temperature, catalyst concentration, initial water concentration and initial ethyl silicate concentration, whereas it decreased with increasing number of Si atoms in the ethyl silicate molecules. At pH 0–7 the hydrolysis was acid catalysed, but at pH above 7.0 it was base catalysed. Simultaneously with the hydrolysis, condensation occurred at a rate which increased with increasing temperature, catalyst concentration, ETS40 concentration and, above all, with increasing initial water concentration. The condensation rate depended on the pH. The condensation was at its slowest for pH around 2.0. For pH below 2.0, the condensation increased with increasing hydrogen ion concentration; for pH above 2.0 the condensation increased with decreasing hydrogen ion concentration. Phosphoric acid and hydrofluoric acid increased the rate of condensation considerably. The reaction of ETS40 with water at pH around 2.0 gave rise during the hydrolysis to solutions of ethoxyhydroxysiloxanes with an average of 14–20 Si atoms in a molecule, which displayed long-term stability.  相似文献   


9.
A procedure is presented which involves working below the supercritical temperature and pressure and which conserves the structure of the wet gel. The fundamental step of the subcritical preparation of aerogels is the prevention of the condensation reaction of the ≡SisurfaceOH groups at the inner surface of the gel during drying. The reaction $$2* \equiv {\text{Si}}_{{\text{surface}}} {\text{OH}} \to \equiv {\text{Si}} - \equiv + {\text{H}}_{\text{2}} 0$$ is avoided by occupation of the surface with a stable chemical group which does not condense. An esterification ≡SisurfaceOH + ROH → ≡ SisurfaceOR + H2O is a simple method of sealing the inner surface. This reaction is an equilibrium reaction. The equilibrium is shifted in favor of ≡ SisurfaceOR by removal of the water. The best esterification was obtained by use of n-butanol. Densities of the aerogels prepared under subcritical conditions lower than 0.1 g cm?3 were obtained. The changes in the structure of the gel during all procedure steps were studied by small angle X-ray scattering, transmission- and scanning electron microscopy.  相似文献   

10.
用密度泛函方法在B3LYP/6-31G(d,p)基组水平上对反应系统中的所有物种进行全优化,用CPCM溶剂模型在同一基组水平上进行了单点计算,系统研究了硅醇盐前驱体Si(OCH3)4在酸性条件下的水解、聚合机理,阐明了二者的相互竞争关系.研究发现,H2O以氢键或配位键与前驱体结合,然后通过氢转移完成水解;水分子从质子化烷氧基的对面键合并发生水解;第4级水解是H2O从对位驱逐质子化烷氧基,但不能水解完全;水解产物通过"环状模式",由氢键结合成多元环,然后发生氢转移并完成聚合;水解过程的能垒明显低于聚合过程;H+阻止水解产物聚合成环;硅正离子可引发无垒聚合反应,但在能量上并不可行.  相似文献   

11.
A set of new titanium-silsesquioxane epoxidation catalysts was discovered by exploring the hydrolytic condensation of a series of trichlorosilanes in highly polar solvents by means of high-speed experimentation techniques. The most promising silsesquioxane leads were prepared on a conventional laboratory scale and fully characterised. The lead generated by the hydrolytic condensation of tBuSiCl(3) in DMSO consisted of a set of incompletely condensed silsesquioxane structures, whereas that obtained from the hydrolytic condensation of tBuSiCl(3) in water consisted of a single silsesquioxane structure, tBu(2)Si(2)O(OH)(4). This is the first reported example of the use of this silsesquioxane as a precursor for active Ti catalysts. The Ti complexes prepared with tBu(2)Si(2)O(OH)(4) were supported on silica to produce active heterogeneous epoxidation catalysts.  相似文献   

12.
The incompletely condensed monosilylated silsesquioxanes (c-C5H9)7Si7O9(OSiRR'2)(OH)2 (SiRR'2 = SiMe3, SiMe2C(H)CH2, SiMePh2) were reacted with SiCl(4) in the presence of an amine which yielded the dichloro compounds (c-C5H9)7Si7O9(OSiRR'2)O2SiCl2 (1-3). These compounds could be hydrolyzed into the corresponding silsesquioxanes containing geminal silanols, (c-C5H9)7Si7O9(OSiRR'2)O2Si(OH)2 (4-6). At elevated temperatures, the geminal silsesquioxanes 4 and 5 undergo condensation reactions and form the closed-cage silsesquioxane monosilanol, (c-C5H9)7Si8O12(OH). The more sterically hindered geminal silsesquioxane 6 undergoes in solution intermolecular dehydroxylation, yielding the thermodynamically stable dimeric disilanol, [(c-C5H9)7Si7O9(OSiMePh2)(O2Si(OH)-)]2-(mu-O) (7). NMR and FT-IR studies show that the two silanols of the geminal silsesquioxanes 4-6 are different from each other with respect to hydrogen bonding, both in solution and in the solid state. Hydrogen bonding of the geminal silanol-containing silsesquioxanes was examined and compared to hydrogen bonding in silsesquioxanes possessing vicinal or isolated silanol groups. The relative Br?nsted acidity of the geminal silanols was determined using pK(ip) (ion-pair acidity) measurements in THF with UV-vis. These acidities were compared with those of other silsesquioxanes containing silanol groups. Acidities of 4-6 were found to be among the lowest known for silsesquioxanes.  相似文献   

13.
The hydrolysis and reactions of alkoxy silane groups have been studied on a model compound (TA) prepared from 2 mol of phenyl glycidyl ether and 1 mol of aminopropyl triethoxy silane. At low (40°C) and high (140°C) temperatures, the monomer conversion and the evolution of the molecular mass are followed by size exclusion chromatography (SEC). During the same reaction time, the evolution of the functional groups, hydroxyl CH? OH, ethoxy ? O? C2H5, and siloxane Si? O? Si, is observed by FTIR spectroscopy. Without the presence of water, reactions between hydroxyl and ethoxy silane lead to gelation at the end of the reaction. A by-product, probably a cyclic tetramer is also formed. After the hydrolysis, the reaction of the model compound is quite different. The product of reaction is always soluble, even after a treatment at high temperatures, and the evolution of the molecular mass versus the reaction time seems to correspond to the condensation giving a dead cyclic tetramer. From this study it is evident that the curing cycle has a great influence on the properties of the interface of a composite based on a epoxy matrix.  相似文献   

14.
Waterborne polyurethane (WBPU) sol–gel adhesives were prepared through a prepolymer process followed by a sol–gel reaction of (3-aminopropyl)triethoxysilane (APTES). The terminal amine group of APTES reacted with the NCO group of the prepolymer, and the ethoxy group created Si–O–Si branching by hydrolysis and condensation reactions in water at the dispersion step. Water swelling (%), tensile strength and Young’s modulus of the synthesized WBPU sol–gel adhesives were improved by increasing APTES content. Synthesized WBPU sol–gel adhesives were used for bonding nylon fabrics. A significant improvement in adhesive strength was recorded, and the potential for good adhesive strength under water at moderately high temperature (up to 75 °C) was observed with 6.84 mol% APTES in WBPU sol–gel adhesives.  相似文献   

15.
The adsorption and reaction behaviors of HF on the α-Al(2)O(3)(0001) surface are systematically investigated using density functional theory method. By increasing the number of HF molecules in a p(2 × 1) α-Al(2)O(3)(0001) slab, we find that HF is chemically dissociated at low coverage; while both physical and dissociative adsorption occurs at a 3/2 monolayer (ML) coverage. At the same coverage (1.0 ML), diverse configurations of the dissociated HF are obtained in the p(2 × 1) model; while only one is observed in the p(1 × 1) slab due to its smaller surface area compared with the former one. Preliminary fluorination reaction study suggests that the total energy of two dissociated HF in the p(2 × 1) slab increases by 1.00 and 0.72 eV for the formation and desorption of water intermediate, respectively. The coadsorption behaviors of HF and H(2)O indicate that the pre-adsorbed water is unfavorable for the fluorination of Al(2)O(3), which is well consistent with the experimental results. The calculated density of states show that the peak of σ(H-F) disappears, while the peaks of σ(H-O) and σ(Al-F) are observed at -8.4 and -5 to -3 eV for the dissociated HF. Charge density difference analysis indicates that the dissociated F atom attracts electrons, while no obvious changes on electrons are observed for the surface Al atoms.  相似文献   

16.
A direct dynamics simulation at the B3LYP/6-311+G(d,p) level of theory was used to study the F- + CH3OOH reaction dynamics. The simulations are in excellent agreement with a previous experimental study (J. Am. Chem. Soc. 2002, 124, 3196). Two product channels, HF + CH2O + OH- and HF + CH3OO-, are observed. The former dominates and occurs via an ECO2 mechanism in which F- attacks the CH3- group, abstracting a proton. Concertedly, a carbon-oxygen double bond is formed and OH- is eliminated. Somewhat surprisingly this is not the reaction path, predicted by the intrinsic reaction coordinate (IRC), which leads to a deep potential energy minimum for the CH2(OH)2...F- complex followed by dissociation to HF + CH2(OH)O-. None of the direct dynamics trajectories followed this path, which has an energy release of -63 kcal/mol and is considerably more exothermic than the ECO2 path whose energy release is -27 kcal/mol. Other product channels not observed, and which have a lower energy than that for the ECO2 path, are F- + CO + H2 + H2O (-43 kcal/mol), F- + CH2O + H2O (-51 kcal/mol), and F- + CH2(OH)2 (-60 kcal/mol). Formation of the CH3OOH...F- complex, with randomization of its internal energy, is important, and this complex dissociates via the ECO2 mechanism. Trajectories which form HF + CH3OO- are nonstatistical events and, for the 4 ps direct dynamics simulation, are not mediated by the CH3OOH...F- complex. Dissociation of this complex to form HF + CH3OO- may occur on longer time scales.  相似文献   

17.
在量子化学对SiH与H2O和H2S反应计算的基础上,运用统计热力学和Wigner校正的Eyring过渡态理论,计算了上述两反应在200~2000 K温度范围内的热力学函数、平衡常数、频率因子A和速率常数随温度的变化。计算结果表明,两反应在低温下具有热力学优势,而在高温下具有动力学优势。比较两反应的计算结果发现,在相同的温度下,SiH与H2O反应比SiH与H2S反应放热较多,但速率常数却较小。SiH与H2O反应和前文报道的SiH与HF反应的比较表明,SiH与H2O反应放热较少,而且在相同温度下,速率常数也较小。  相似文献   

18.
原位引入有机组分对氧化硅体系改性是合成有机-无机杂化硅材料的重要方法. 利用原位的29Si液体核磁, 研究了甲醇为溶剂、氨水催化条件下的四乙氧基硅烷(TEOS)和二甲基二乙氧基硅烷(DDS)原位共水解的动力学过程. 通过改变反应体系中氨和水的浓度, 拟合出单体及中间产物浓度随时间的变化曲线, 得到了TEOS和DDS各自的水解速率常数以及相应各反应物的反应级数. 与单前驱体水解一致的是, 在双前驱体系中TEOS和DDS自身的反应级数仍保持一级, 但是氨和水的反应级数都有不同程度的增大. 与单前驱体水解速率方程相比, 混合体系中TEOS的水解速率常数增大. 同时, DDS在双前驱体中比单前驱体中的水解速率常数有很大程度的减少. 水解动力学表明, TEOS和DDS在双前驱体体系中显示出更平行的水解速率. 利用固体29Si MAS NMR, XPS及小角X射线散射(SAXS)手段对双前驱体体系研究得到的信息显示, 碱催化条件下原位的TEOS水解中间物与DDS中间产物的原位共缩聚程度很弱.  相似文献   

19.
The potential energy profile for the F+(H2O)3→HF+(H2O)2OH reaction has been investigated using the “gold standard” CCSD(T) method with correlation‐consistent basis sets up to cc‐pVQZ. Four different reaction pathways have been found and these are related, both geometrically and energetically. The entrance complexes F???(H2O)3 for all four reaction pathways are found lying ca. 7 kcal mol?1 below the separated reactants F+(H2O)3. The four reaction barriers on their respective reaction coordinates lie ca. 4 kcal mol?1 below the reactants. There are also corresponding exit complexes HF???(H2O)2OH, lying about 13 kcal mol?1 below the separated products HF+(H2O)2OH. Compared with analogous F+(H2O)2 and F+H2O reactions, the F+(H2O)3 reaction is somewhat similar to the former but qualitatively different from the latter. It may be reasonable to predict that the reactions between atomic fluorine and water tetramer (or even larger water clusters) may be similar to the F+(H2O)3 reaction.  相似文献   

20.
Mechanisms of formation of the mutagenic product 8-oxoguanine (8OG) due to reactions of guanine with two separate OH* radicals and with H2O2 were investigated at the B3LYP/6-31G, B3LYP/6-311++G, and B3LYP/AUG-cc-pVDZ levels of theory. Single point energy calculations were carried out with the MP2/AUG-cc-pVDZ method employing the optimized geometries at the B3LYP/AUG-cc-pVDZ level. Solvent effect was treated using the PCM and IEF-PCM models. Reactions of two separate OH* radicals and H2O2 with the C2 position of 5-methylimidazole (5MI) were investigated taking 5MI as a model to study reactions at the C8 position of guanine. The addition reaction of an OH* radical at the C8 position of guanine is found to be nearly barrierless while the corresponding adduct is quite stable. The reaction of a second OH* radical at the C8 position of guanine leading to the formation of 8OG complexed with a water molecule can take place according to two different mechanisms, involving two steps each. According to one mechanism, at the first step, 8-hydroxyguanine (8OHG) complexed with a water molecule is formed ,while at the second step, 8OHG is tautomerized to 8OG. In the other mechanism, at the first step, an intermediate complexed (IC) with a water molecule is formed, the five-membered ring of which is open, while at the second step, the five-membered ring is closed and a hydrogen bonded complex of 8OG with a water molecule is formed. The reaction of H2O2 with guanine leading to the formation of 8OG complexed with a water molecule can also take place in accordance with two different mechanisms having two steps each. At the first step of one mechanism, H2O2 is dissociated into two OH* groups that react with guanine to form the same IC as that formed in the reaction with two separate OH* radicals, and the subsequent step of this mechanism is also the same as that of the reaction of guanine with two separate OH* radicals. At the first step of the other mechanism of the reaction of guanine with H2O2, the latter molecule is dissociated into a hydrogen atom and an OOH* group which become bonded to the N7 and C8 atoms of guanine, respectively. At the second step of this mechanism, the OOH* group is dissociated into an oxygen atom and an OH* group, the former becomes bonded to the C8 atom of guanine while the latter abstracts the H8 atom bonded to C8, thus producing 8OG complexed with a water molecule. Solvent effects of the aqueous medium on certain reaction barriers and released energies are appreciable. 5MI works as a satisfactory model for a qualitative study of the reactions of two separate OH* radicals or H2O2 occurring at the C8 position of guanine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号