首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Simulation of Wind Flow Around a Building with a k–ε Model   总被引:1,自引:0,他引:1  
The three-dimensional numerical simulation of airflow around a building using a k–ε two-equation turbulence model is presented in this paper. Several cases of numerical simulation of airflow around a building are carried out to estimate the influence of mesh spacing on simulated results. The accuracy of simulations is examined by comparing the predicted results with wind-tunnel experiments. It is confirmed that numerical simulations by means of the k–ε model reproduce the velocity fields well when using fine mesh resolution. In the latter part of the paper, the simulation method is applied to predict the flow field around a building with different width-to-height ratios, under light wind conditions. Received 16 June 1999 and accepted 20 July 2000  相似文献   

2.
This paper is concerned with a liquid metal flow driven by a rotating magnetic field inside a stationary cylinder. We consider especially the secondary meridional flow during the time when the fluid spins up from rest. The developing flow is investigated experimentally and by direct numerical simulations. The vertical profiles of the axial velocity are measured by means of the ultrasound Doppler velocimetry. Evolving instabilities in the form of Taylor–G?rtler vortices have been observed just above the instability threshold (Ta ≥ 1.5· Ta cr). The rotational symmetry may survive over a distinct time even if a first Taylor–G?rtler vortex pair has been formed as closed rings along the cylinder perimeter. The transition to a three-dimensional flow in the side layers results from the advection or a precession and splitting of the Taylor–G?rtler vortex rings. The predictable behaviour of the Taylor–G?rtler vortices disappears with increasing magnetic field strength. The numerical simulations agree very well with the flow measurements.  相似文献   

3.
D. Igra  J. Falcovitz 《Shock Waves》2010,20(5):441-444
This paper describes a numerical simulation of bow shock formation ahead of a sphere at steady supersonic flow in the Mach number range of 1.025–1.20. Turbulent viscous flow results are presented using the Spalart–Allmaras turbulence model. The purpose of this study is to determine the shock standoff distance for a spherical projectile at slightly supersonic free flight speeds. Results are compared to experimental data, including double exposure holographic interferograms obtained from a 40 mm polycarbonate sphere launched by a light gas gun. The shock standoff distance was determined from the interferograms. The present numerical simulations were found to agree with previously published data, and reached down to M = 1.025—a range where almost no previously published data exists. The computed flow structure and shock wave locations agree well with recently obtained free-flight interferograms.  相似文献   

4.
Detonation initiation is investigated in aluminium/oxygen and aluminium/air mixtures. Critical conditions for initiation of spherical detonations are examined in analogy with the criteria defined for gaseous mixtures, which correlate critical parameters of detonation initiation to the characteristic size of the cellular structure. However, experimental data on the detonation cell size in these two-phase mixtures are very scarce, on account of the difficulty to perform large-scale experiments. Therefore, 2D numerical simulations of the detonation cellular structure have been undertaken, with the same combustion model for Al/air and Al/O2 mixtures. The cell size is found to be λ = 37.5 cm for a rich (r = 1.61) aluminium–air mixture, and λ = 7.5 cm for a stoichiometric aluminium-oxygen mixture, which is in reasonable agreement with available experimental data. Calculations performed in large-scale configurations (up to 25 m in length and 1.5 m in lateral direction) suggest that the critical initiation energy and predetonation radius for direct initiation of the unconfined detonation in the aluminium–air mixture are, respectively, 10 kg of TNT and 8 m. Moreover, numerical simulations reveal that the structure of the detonation wave behind the leading front is even more complicated than in pure gaseous mixtures, due to two-phase flow effects. This paper is based on work that was presented at the 21st International Colloquium on the Dynamics of Explosions and Reactive Systems, Poitiers, France, July 23–27, 2007.  相似文献   

5.
Direct numerical simulations of the evolution of disturbances in a viscous shock layer on a flat plate are performed for a free-stream Mach number M = 21 and Reynolds number Re L = 1.44 · 105. Unsteady Navier-Stokes equations are solved by a high-order shock-capturing scheme. Processes of receptivity and instability development in a shock layer excited by external acoustic waves are considered. Direct numerical simulations are demonstrated to agree well with results obtained by the locally parallel linear stability theory (with allowance for the shock-wave effect) and with experimental measurements in a hypersonic wind tunnel. Mechanisms of conversion of external disturbances to instability waves in a hypersonic shock layer are discussed. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 3, pp. 84–91, May–June, 2007.  相似文献   

6.
Results of a numerical and experimental study of characteristics of disturbances in a hypersonic shock layer on a flat plate covered by a sound-absorbing coating and aligned at an angle of attack are presented. Experiments and computations are performed for the free-stream Mach number M = 21 and Reynolds number Re L = 6 · 104. A possibility of suppressing pressure fluctuations in the shock layer at frequencies of 20–40 kHz with the use of tubular and porous materials incorporated into the plate surface is demonstrated. Results of numerical simulations are found to be in good agreement with experimental data.  相似文献   

7.
Large-eddy simulations of the dispersion from scalar line sources at various locations within a fully developed turbulent channel flow at Re = uh/ν = 10,400 are presented. Both mean and fluctuating scalar quantities are compared with those from the single available set of experimental data (Lavertu and Mydlarski, J Fluid Mech 528:135–172, 2005) and differences are highlighted and discussed. The results are also discussed in the context of scalar dispersion in other kinds of turbulent flows, e.g. homogeneous shear-flow. Initial computations at a much lower Reynolds number are also reported and compared with the two available direct numerical simulation data sets.  相似文献   

8.
Results of numerical simulations of a quasi-one-dimensional unsteady flow in a channel considered as an element of an air-breathing engine are presented. The influence of parameters of energy supplied in the pulsed-periodic mode (power, pulse frequency, and distribution of energy sources along the channel) on the characteristics of the flow with Mach numbers M 0 = 2.4–4.0 at the channel entrance is determined. A channel configuration that allows the energy supply distribution to be found from the condition of restriction of the maximum value of the gas temperature is proposed. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 50, No. 1, pp. 3–11, January–February, 2009.  相似文献   

9.
This work investigates the adaptive QS synchronization of non-identical chaotic systems with unknown parameters. The sufficient conditions for achieving QS synchronization of two different chaotic systems (including different dimensional systems) are derived, based on Lyapunov stability theory. By the adaptive control technique, the control laws and the corresponding parameter update laws are proposed such that the non-identical chaotic systems are to have QS synchronization. Finally, four illustrative numerical simulations are also given to demonstrate the effectiveness of the proposed scheme.  相似文献   

10.
Predicting the Collapse of Turbulence in Stably Stratified Boundary Layers   总被引:6,自引:0,他引:6  
The collapse of turbulence in a plane channel flow is studied, as a simple analogy of stably stratified atmospheric flow. Turbulence is parameterized by first-order closure and the surface heat flux is prescribed, together with the wind speed and temperature at the model top. To study the collapse phenomenon both numerical simulations and linear stability analysis are used. The stability analysis is nonclassical in a sense that the stability of a parameterized set of equations of a turbulent flow is analyzed instead of a particular laminar flow solution. The analytical theory predicts a collapse of turbulence when a certain critical value of the stability parameter δ/L (typically O(0.5–1)) is exceeded, with δ the depth of the channel and L the Obukhov length. The exact critical value depends on channel roughness to depth ratio z 0/δ. The analytical predictions are validated by the numerical simulations, and good agreement is found. As such, for the flow configuration considered, the present framework provides both a tool and a physical explanation for the collapse phenomenon.  相似文献   

11.
We consider two magnetohydrodynamic-α (MHDα) models with kinematic viscosity and magnetic diffusivity for an incompressible fluid in a three-dimensional periodic box (torus). More precisely, we consider the Navier–Stokes-α-MHD and the Modified Leray-α-MHD models. Similar models are useful to study the turbulent behavior of fluids in presence of a magnetic field because of the current impossibility to handle non-regularized systems neither analytically nor via numerical simulations. In both cases, the global existence of the solution and of a global attractor can be shown. We provide an upper bound for the Hausdorff and the fractal dimension of the attractor. This bound can be interpreted in terms of degrees of freedom of the long-time dynamics of the involved system and gives information about the numerical stability of the model. We get the same bound that holds for the Simplified Bardina-MHD model, considered in a previous paper (this result provides, in some sense, an intermediate bound between the number of degrees of freedom for the Simplified Bardina model and the Navier–Stokes-α equation in the nonmagnetic case). However, the Navier–Stokes-α-MHD system is preferable since, in the ideal case, it conserves more quadratic invariants derived from the standard MHD model.  相似文献   

12.
This numerical investigation carried out on turbulent lean premixed flames accounts for two algebraic – the Lindstedt–Vaos (LV) and the classic Bray–Moss–Libby (BML) – reaction rate models. Computed data from these two models is compared with the experimental data of Kobayashi et al. on 40 different methane, ethylene and propane Bunsen flames at 1 bar, where the mean flame cone angle is used for comparison. Both models gave reasonable qualitative trend for the whole set of data, in overall. In order to characterize quantitatively, firstly, corrections are made by tuning the model parameters fitting to the experimental methane–air (of Le = 1.0) flame data. In case of the LV model, results obtained by adjusting the pre-constant, i.e., reaction rate parameter, CR, from its original value 2.6 to 4.0, has proven to be in good agreement with the experiments. Similarly, for the BML model, with the tuning of the exponent n, in the wrinkling length scale, Ly = Cllx(sL/u′)n from value unity to 1.2, the outcome is in accordance with the measured data. The deviation between the measured and calculated data sharply rises from methane to propane, i.e., with increasing Lewis number. It is deduced from the trends that the effect of Lewis number (for ethylene–air mixtures of Le = 1.2 and propane–air mixtures of Le = 1.62) is missing in both the models. The Lewis number of the fuel–air mixture is related to the laminar flame instabilities. Second, in order to quantify for its influence, the Lewis number effect is induced into both the models. It is found that by setting global reaction rate inversely proportional to the Lewis number in both the cases leads to a much better numerical prediction to this set of experimental flame data. Thus, by imparting an important phenomenon (the Lewis number effect) into the reaction rates, the generality of the two models is enhanced. However, functionality of the two models differs in predicting flame brush thickness, giving scope for further analysis.  相似文献   

13.
Coefficients of heat transfer to the surface in a laminar hypersonic flow (M = 21) over plane and axisymmetric models with a compression corner are presented. These coefficients are measured by an infrared camera. The parameters varied in the experiments are the angle of the compression corner and the distance to the corner point. Characteristics of the flow with and without separation in the corner configuration are obtained. The measured results are compared with direct numerical simulations performed by solving the full unsteady Navier-Stokes equations. Experiments with controlled streamwise structures inserted into the flow are described. A substantial increase in the maximum values of the heat-transfer coefficient in the region of flow reattachment after developed laminar separation is demonstrated. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 50, No. 4, pp. 112–120, July–August, 2009.  相似文献   

14.
This article describes a semi-analytical model for two-phase immiscible flow in porous media. The model incorporates the effect of capillary pressure gradient on fluid displacement. It also includes a correction to the capillarity-free Buckley–Leverett saturation profile for the stabilized-zone around the displacement front and the end-effects near the core outlet. The model is valid for both drainage and imbibition oil–water displacements in porous media with different wettability conditions. A stepwise procedure is presented to derive relative permeabilities from coreflood displacements using the proposed semi-analytical model. The procedure can be utilized for both before and after breakthrough data and hence is capable to generate a continuous relative permeability curve unlike other analytical/semi-analytical approaches. The model predictions are compared with numerical simulations and laboratory experiments. The comparison shows that the model predictions for drainage process agree well with the numerical simulations for different capillary numbers, whereas there is mismatch between the relative permeability derived using the Johnson–Bossler–Naumann (JBN) method and the simulations. The coreflood experiments carried out on a Berea sandstone core suggest that the proposed model works better than the JBN method for a drainage process in strongly wet rocks. Both methods give similar results for imbibition processes.  相似文献   

15.
Fluid flows are very often governed by the dynamics of a mall number of coherent structures, i.e., fluid features which keep their individuality during the evolution of the flow. The purpose of this paper is to study a low order simulation of the Navier–Stokes equations on the basis of the evolution of such coherent structures. One way to extract some basis functions which can be interpreted as coherent structures from flow simulations is by Proper Orthogonal Decomposition (POD). Then, by means of a Galerkin projection, it is possible to find the system of ODEs which approximates the problem in the finite-dimensional space spanned by the POD basis functions. It is found that low order modeling of relatively complex flow simulations, such as laminar vortex shedding from an airfoil at incidence and turbulent vortex shedding from a square cylinder, provides good qualitative results compared with reference computations. In this respect, it is shown that the accuracy of numerical schemes based on simple Galerkin projection is insufficient and numerical stabilization is needed. To conclude, we approach the issue of the optimal selection of the norm, namely the H 1 norm, used in POD for the compressible Navier–Stokes equations by several numerical tests. Received 21 April 1999 and accepted 18 November 1999  相似文献   

16.
Based on experimental data and numerical modeling, it is shown that a lamina of melted metal of thickness of order0.01 d, in which the temperature is close to the melting point of the particle material, can be formed upon high-speed impact (v 0≈500–1200 m/sec) of a fine metal particle (d=1–50 μm) on a rigid undeformable barrier near the contact surface. Institute of Theoretical and Applied Mechanics, Siberian Division, Russian Academy of Sciences, Novosibirsk 630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 41, No. 1, pp. 204–209, January–February, 2000.  相似文献   

17.
Correlations are presented to compute the mutual solubilities of CO2 and chloride brines at temperatures 12–300°C, pressures 1–600 bar (0.1–60 MPa), and salinities 0–6 m NaCl. The formulation is computationally efficient and primarily intended for numerical simulations of CO2-water flow in carbon sequestration and geothermal studies. The phase-partitioning model relies on experimental data from literature for phase partitioning between CO2 and NaCl brines, and extends the previously published correlations to higher temperatures. The model relies on activity coefficients for the H2O-rich (aqueous) phase and fugacity coefficients for the CO2-rich phase. Activity coefficients are treated using a Margules expression for CO2 in pure water, and a Pitzer expression for salting-out effects. Fugacity coefficients are computed using a modified Redlich–Kwong equation of state and mixing rules that incorporate asymmetric binary interaction parameters. Parameters for the calculation of activity and fugacity coefficients were fitted to published solubility data over the PT range of interest. In doing so, mutual solubilities and gas-phase volumetric data are typically reproduced within the scatter of the available data. An example of multiphase flow simulation implementing the mutual solubility model is presented for the case of a hypothetical, enhanced geothermal system where CO2 is used as the heat extraction fluid. In this simulation, dry supercritical CO2 at 20°C is injected into a 200°C hot-water reservoir. Results show that the injected CO2 displaces the formation water relatively quickly, but that the produced CO2 contains significant water for long periods of time. The amount of water in the CO2 could have implications for reactivity with reservoir rocks and engineered materials.  相似文献   

18.
New data on the base pressure in a two-dimensional ow with a Mach number M = 5 are obtained for a wide range of variation of the normalized boundary-layer thickness in the flow-separation cross section. The test results are compared with Tanner’s theory, and a conclusion is made that this numerical model has to be corrected. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 46, No. 3, pp. 23–28, May–June, 2005.  相似文献   

19.
20.
Free convection heat transfer along an isothermal vertical wavy surface was studied experimentally and numerically. A Mach-Zehnder Interferometer was used in the experiment to determine the local heat transfer coefficients. Experiments were done for three different amplitude–wavelength ratios of α = 0.05, 0.1, 0.2 and the Rayleigh numbers ranging from Ra l = 2.9 × 105 to 5.8 × 105. A finite-volume based code was developed to verify the experimental study and obtain the results for all the amplitude–wavelength ratios between α = 0 to 0.2. It is found that the numerical results agree well with the experimental data. Results indicate that the frequency of the local heat transfer rate is the same as that of the wavy surface. The average heat transfer coefficient decreases as the amplitude–wavelength ratio increases and there is a significant difference between the average heat transfer coefficients of the surface with α = 0.2 and those surfaces with α = 0.05 and 0.1. The experimental data are correlated with a single equation which gives the local Nusselt number along the wavy surface as a function of the amplitude–wavelength ratio and the Rayleigh number.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号