首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
In this study, a Zr metal–organic framework (UIO‐66) was synthesized with zirconium tetrachloride and terephthalic acid using the solvent method. Then various masses of 1‐methylimidazolium‐3‐propylsulfonate hydrosulfate (PSMIMHSO4) were supported on the UIO‐66 as catalysts, which were used for catalytic oxidative desulfurization. Sulfur removal using 400 mg of 40% PSMIMHSO4 supported on the UIO‐66 of greater than 94% was obtained at 313 K for 20 min with an O/S molar ratio of 7:1. The results obtained in this work could provide useful information for the design of water‐stable metal–organic frameworks with permanent porosity in applications of catalytic oxidative desulfurization. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
In the present study, the synthesis of mordenite zeolite/MIL‐101(Cr) metal–organic framework (MOF) composite [MOR/MIL‐101(Cr)] using the ship in a bottle method was suggested. The properties of prepared composite and individual MOF and MOR zeolite were characterized by X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption–desorption measurement, and thermogravimetric analysis (TGA). The XRD results indicated diffraction peaks for each compound (MOR and MOF) in composite. The SEM and TEM images showed the formation of plates MOR (with size of 2.5 × 3 μm) along with spherical particles MIL‐101. The Brunauer–Emmett–Teller results showed that the surface area of the composite was smaller than individual MOF and MOR zeolite. Based on TGA plots, the hybrid zeolite/MOF composite was more thermally stable compared with the isolated MIL‐101(Cr). The composite was functionalized by post‐synthetic modification to obtain acid–base bifunctionality (H‐MOR/MIL‐101‐ED) for the synthesis of chromene derivatives. The acidity from framework Al‐O(H)‐Si sites in MOR and basicity from amine groups in MIL‐101 were obtained by post‐synthetic modification.  相似文献   

3.
A catalytic amount of the basic metal–organic framework (IRMOF‐3) with organic substrates was found to be an efficient, selective and waste‐free green approach for the unsymmetrical Hantzsch coupling reaction. The catalyst can be isolated from the reaction mixture and reused at least four times. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
A terbium–organic framework (Tb‐MOF) was prepared using a previously reported procedure. Tb‐MOF was characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, powder X‐ray diffraction and surface area analysis. Tb‐MOF was employed as a heterogeneous Lewis acid catalyst for the synthesis of β‐aminoalcohols. Also, the effect of ultrasonic irradiation was examined in the catalytic aminolysis of styrene oxide. The reaction conditions were optimized by variation of reaction time, catalyst concentration and solvent. A variety of β‐aminoalcohols were synthesized and characterized. The Tb‐MOF catalyst showed excellent selectivity and high yield for these transformations.  相似文献   

5.
A composite material has been successfully synthesized using an amino‐containing metal–organic framework (NH2‐MOF) and phosphotungstic acid (PTA). This composite was characterized using X‐ray diffraction, high‐resolution transmission electron microscopy, nitrogen adsorption–desorption measurements, Fourier transform infrared spectroscopy and X‐ray fluorescence. Characterization results confirmed the immobilization and good distribution of PTA in the NH2‐MOF. The PTA/NH2‐MOF was subsequently applied in the oxidative desulfurization of dibenzothiophene (DBT) with H2O2 as the oxidant in n‐octane under atmospheric conditions. Under optimal reaction conditions, the oxidative desulfurization conversion of DBT reached 100%, and there was no significant decrease of the catalytic activity after four recycles. Kinetic experiments were also performed for the reaction at various temperatures, which indicated that oxidative reaction rates followed pseudo first‐order kinetics, and the apparent activation energy for the desulfurization reaction was 34.1 kJ mol?1. The results indicated that this material exhibited excellent catalytic performance for oxidative desulfurization of DBT. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
Iron‐based metal–organic framework VNU‐20 was utilized as a heterogeneous catalyst for cascade reactions between ketoximes and dibenzyl ether to produce 2,4,6‐triphenylpyridines. Additionally, benzyl alcohol and (dimethoxymethyl)benzene could be used as an alternative starting materials for the transformation. The oxidant exhibited a remarkable impact on the reactions, and di‐tert‐butylperoxide was the most appropriate candidate. The VNU‐20 displayed higher efficiency than many homogeneous and heterogeneous catalysts. The catalyst was reusable for the cascade reactions without a noticeable deterioration in catalytic activity. This transformation is new, and would offer alternative routes to triphenylpyridines utilizing ketoximes as building blocks.  相似文献   

7.
For the first time, metal‐exchange in a magnetic metal–organic framework (MOF) via tandem magnetization and post‐synthetic modification has been developed. The new magnetic mixed‐metal metal–organic framework nanocomposite, CoFe2O4/[Cu0.63/Zn0.37‐TMU‐17‐NH2] (CoFe2O4/[Cu/Zn‐MOF]) has been synthesized by immersing the CoFe2O4/Zn‐TMU‐17‐NH2 (CoFe2O4/Zn‐MOF) as a template in DMF solution of Cu (II) salts. CoFe2O4/[Cu/Zn‐MOF] showed to be a highly reactive and easily recoverable magnetic catalyst for the preparation of tetrazole derivatives via one‐pot three‐component reactions of different aldehydes with hydroxyl amine hydrochloride and sodium azide. Our results (Fourier transform‐infrared, inductively coupled plasma‐optical emission spectroscopy, powder X‐ray diffraction, field emission‐scanning electron microscopy, energy‐dispersive X‐ray spectroscopy‐mapping and vibrating‐sample magnetometer) show successful partial metal‐exchange in which the framework integrity remained intact during the metal‐exchange process.  相似文献   

8.
A metal–organic framework Al‐MIL‐53‐NH2‐derived Brønsted acid catalyst (Al‐MIL‐53‐RSO3H) has been synthesized employing a post‐synthetic modification strategy under mild conditions. The Al‐MIL‐53‐RSO3H catalyst was successfully utilized in the nitro‐Mannich reaction taking advantage of its strong Brønsted acidity. Good to excellent yields of Mannich adducts were achieved for a variety of acylimine substrates in the presence of 0.1 mol% Al‐MIL‐53‐RSO3H. Furthermore, the Al‐MIL‐53‐RSO3H catalyst can be recycled five times without decreasing the yield and selectivity of Mannich adducts.  相似文献   

9.
Nanoagents achieving photodynamic therapy (PDT) and photothermal therapy (PTT) combination treatment with improved therapeutic effect are highly desirable. However, the incorporation of both PDT and PTT into a single nanoagent often requires multistep fabrication process. Herein, we report that photoactive porphyrin ligands have been successfully introduced into Zn‐TCPP structure to construct the nanoagents that possesses photodynamic performance and photothermal performance simultaneously. Such a nanoagent enables the generation of single oxygen and heat under laser irradiation. Additionally, it exhibits satisfactory biocompatibility and high light toxicity against cancer cells. The current work provides a feasible approach to introduce both PDT and PTT into a single nanoplatform.  相似文献   

10.
Cu‐doped Ni‐based metal–organic frameworks (MOFs) nanomaterials fabricated through a one‐pot hydrothermal reaction were characterized, and their performance as supercapacitor electrode materials was further studied for the first time. The results indicated that the doping of foreign metals and the introduction of K3[Fe(CN)6] in the KOH electrolyte significantly improve the performance of the supercapacitor. The results indicated that the Ni2.6Cu0.4 MOFs material shows the highest specific capacitance (1282 F g?1 at 1 A g?1 in mixed 2 M KOH and 0.1 M K3[Fe(CN)6]) and optimal capacitance retention (85.7% after 2000 cycles). This work provides a feasible optimization strategy for the construction of MOFs‐based supercapacitor electrode materials with excellent performance, and also provides a reliable experimental and theoretical basis for practical industrial production.  相似文献   

11.
A Zr‐based metal–organic framework with bipyridine units (UiO‐67) has been utilized for the immobilization of catalytically active iron species via a post‐synthetic metalation method. UiO‐67 bipyridine MOF was synthesized through a simple solvothermal method and was shown to have a UiO‐type structure. Post‐synthetic metalation of UiO‐67 MOF was performed for the immobilization of the catalytically active FeCl3. FT‐IR and EDX element map suggested that FeCl3 is coordinately bonded to the UiO‐67 bipyridine framework. The synthesized UiO‐67‐FeCl3 catalyst was used for the aerobic oxidation of alcohols and benzylic compounds in the presence of molecular oxygen. In addition, the UiO‐67‐FeCl3 catalyst can be reused as a solid heterogeneous catalyst without compromising its activity and selectivity.  相似文献   

12.
In this paper, a novel lanthanum metal–organic framework La‐MOF was prepared via hydrothermal and reflux methods. The La‐MOF was achieved through the reaction of a 5‐amino‐isophthalic acid with 1, 2‐phenylenediamine and lanthanum chloride. The prepared La‐MOF structure was confirmed by XRD, mass spectrometry, IR, UV–Vis and elemental analysis, whereas the size, and morphology was examined by FE‐SEM/EDX and HR‐TEM. The results indicated that the La‐MOF prepared via both methods have the same structure and composition. Meanwhile, the MOF yield, reaction time, morphology, physiochemical and sensing properties were highly depended on the used preparation method. The photoluminescence (PL) study was carried out for the La‐MOF, and the results showed that La‐MOF exhibits strong emission at 558 nm after excitation at 369 nm. Moreover, the PL data indicating that the La‐MOF has highly selective sensing properties for iron (III) competing with different metal ions. The Stern‐Völmer graph shows a linear calibration curve which achieved over a concentration range 1.0–500 μM of Fe3+ with a correlation coefficient, detection, and quantitation limits 0.998, 1.35 μM and 4.08 μM, respectively. According to the remarkable quenching of the PL intensity of La‐MOF using various concentrations of Fe3+, it was successfully used as a sensor for Fe3+detecting in different water resources (pure and waste) samples. The quenching mechanism was studied and it has a dynamic type and due to efficient energy transfer between the La‐MOF and Fe3+.  相似文献   

13.
A heterogeneous catalyst was synthesized by immobilizing Mo(CO)3 in a UiO‐66 metal–organic framework. The benzene ring of the organic linker in UiO‐66 was modified via liquid‐phase deposition of molybdenum hexacarbonyl, Mo(CO)6, as starting precursor to form the (arene)Mo(CO)3 species inside the framework. The structure of this catalyst was characterized using X‐ray diffraction, and chemical integrity was confirmed using Fourier transform infrared and diffuse reflectance UV–visible spectroscopic methods. The metal content was analysed with inductively coupled plasma. Field emission scanning electron microscopy was used to measure particle size and N2 adsorption measurements to characterize the specific surface area. This catalytic system was efficiently applied for epoxidation of alkenes and oxidation of sulfides. The Mo‐containing metal–organic framework was reused several times without any appreciable loss of its efficiency.  相似文献   

14.
Palladium nanoparticle‐incorporated metal–organic framework MIL‐101 (Pd/MIL‐101) was successfully synthesized and characterized using X‐ray diffraction, nitrogen physisorption, X‐ray photoelectron, UV–visible and infrared spectroscopies, and transmission electron microscopy. The characterization techniques confirmed high porosity and high surface area of MIL‐101 and high stability of nano‐size palladium particles. Pd/MIL‐101 nanocomposite was investigated for the Sonogashira cross‐coupling reaction of aryl and heteroaryl bromides with various alkynes under copper‐free conditions. The reusability of the catalyst was tested for up to four cycles without any significant loss in catalytic activity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Polycarbosilane (PCS) was synthesized by the polycondensation of trichloromethylsilane and trimethoxyvinylsilane in the presence of sodium metal. PCS has a highly crosslinked structure, high ceramic yield and high surface area. Titanium metal ion was attached to the polycarbosilane and its catalytic activity was investigated. The Knoevenagel condensation reaction catalysed by titanium‐incorporated polycarbosilane is reported. The titanium‐incorporated PCS catalysed the reaction well and with a diverse set of substrates the reaction proceeded with good yield. PCS‐supported transition metal catalysts have been prepared for the first time and used successfully in the Knoevenagel condensation reaction. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Hybrid composite based on graphene oxide (GO) and covalent organic framework (COF) [GO/COF] was developed via a simple solvothermal method, at which GO was applied as a platform to load COF based on melamine and terephthaldehyde. The synthesized hybrid nanocomposite was characterized by FT-IR, XRD, EDX and SEM techniques. Morphological analyses carried out by SEM confirm the successful growth of COF over GO. Then, the resultant composite was employed as an amazing and cost-effective catalyst in the condensation of several aldehydes with malononitrile and produced the corresponding coupling products in high yields (up to 84%) at room temperature under solvent-free conditions with an amount of catalyst, 15 mg in a very short reaction time of 10 min. The catalyst could be reused without a noteworthy drop in catalytic activity at least eight times. The use of GO/COF catalyst outcomes under mild reaction conditions in very short reaction time, exceptional catalytic activity, high recyclability and an easy work-up process for the Knoevenagel condensation.  相似文献   

17.
A new metal–organic framework (MOF), [Zn(ATA)(bpd)] ( 1Zn ) (ATA: 2‐aminoterephthalic acid; bpd: 1,4‐bis(4‐pyridyl)‐2,3‐diaza‐1,3‐butadiene), exhibiting a three‐dimensional extended porous structure was successfully assembled in a MeOH–H2O solvent system. Under various controlled conditions, 1Zn was obtained in a variety of morphologies such as microspheres, microblocks, microsheets, microplates and microrods. The catalytic performance of the 1Zn microsized MOF was evaluated, and a possible catalytic mechanism was proposed. The flexibility of this MOF assembly strategy for shape control will certainly enhance new potential applications of micro?/nano?MOFs.  相似文献   

18.
Metal–organic framework of NH2‐MIL‐53(Al), with coordinative unsaturated aluminium sites, has been shown to be active in the Groebke–Blackburn–Bienaymé multicomponent coupling reaction based on Ugi‐type amine and aldehyde condensation over isocyanide and then a cyclization process. Interestingly this reaction occurred under solvent‐free conditions with high yield, in which the NH2‐MIL‐53(Al) could be recovered and reused for five reaction cycles, giving a total turnover number of 455.  相似文献   

19.
The p‐arsanilic acid (p‐ASA), as an aromatic organoarsenic compounds, had received considerable concerns for their potential toxicity and carcinogenic properties. It was essential to detect p‐ASA with a facile method. In this paper, an europium based fluorescent metal–organic framework (MOF) [Eu2(clhex)·2H2O)]·H2O ( BUC‐69 ) was successfully prepared under hydrothermal conditions with 1,2,3,4,5,6‐cyclohexanehexacarboxylic acid (H6clhex) as organic linker. BUC‐69 displayed superior fluorescence capability to achieve selective and sensitive detection toward p‐ASA in water, which presented the first example of a MOF‐based sensor to detect p‐ASA. BUC‐69 showed excellent chemical stability in solutions under pH ranging from 4 to 12, which makes it be a potential sensor both in acidity and alkalinity condition. Significantly, BUC‐69 performed well in fluorescent sensing of p‐ASA at a low concentration (10?6 M) in the simulated wastewater prepared with real lake water, and the results were comparable to the values detected by Inductively Coupled Plasma Optical Emission Spectrometer (ICP‐OES). The corresponding mechanism of fluorescent sensing toward p‐ASA with BUC‐69 was proposed and affirmed.  相似文献   

20.
Metal–organic frameworks are promising porous materials. Chiral metal–organic frameworks have attracted considerable attention in controlling enantioselectivity. In this study, a homochiral metal–organic framework [Co2(D‐cam)2(TMDPy)] (D‐cam = d ‐camphorates, TMDPy = 4,4′‐trimethylenedipyridine) with a non‐interpenetrating primitive cubic net has been used as a chiral stationary phase in high‐performance liquid chromatography. It has allowed the successful separation of six positional isomers and six chiral compounds. The good selectivity and baseline separation, or at least 60% valley separation, confirmed its excellent molecular recognition characteristics. The relative standard deviations for the retention time of run‐to‐run and column‐to‐column were less than 1.8 and 3.1%, respectively. These results demonstrate that [Co2(D‐cam)2(TMDPy)] may represent a promising chiral stationary phase for use in high‐performance liquid chromatography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号