首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Visible light‐driven Al‐doped TiO2 with different aluminum contents (2, 5 and 10 mol%) were synthesized via a facile sol–gel method. Fourier transform infrared (FTIR), UV‐visible diffuse reflectance, energy dispersive Xray (EDX) spectroscopy as well as X‐ray diffraction (XRD), X‐ray fluorescence (XRF) and scanning electron microscopy (SEM) methods were used for the characterization of the obtained nanoparticles. The photocatalytic performance of the samples was evaluated by the degradation of rhodamine B (RhB) under visible light irradiation. The yield of the degradation RhB was estimated to be 71%, 89%, 65% and 56%, for the bare TiO2, 2%, 5% and 10% Al‐doped TiO2, respectively. It was found that 2 mol% of Al‐doped TiO2 shows the best photocatalytic performance. In low concentration of dopant, separation of photogenerated electron–hole pairs promoted, and subsequently, the degradation efficiency increased. It was proposed that the degradation of RhB by 2 mol% Al‐doped TiO2 photocatalyst follows both N‐deethylation and chromophore cleavage mechanisms, while the N‐deethylation still predominated over cleavage of dye chromophore structure. The key role of hydroxyl radicals in RhB degradation was verified by the effects of scavengers. In addition, the photocatalyst can be reused for three runs without any significant loss of its catalytic activity.  相似文献   

2.
Visible‐light‐driven plasmonic photocatalyst Ag‐TiO2 nanocomposite hollow spheres are prepared by a template‐free chemically‐induced self‐transformation strategy under microwave‐hydrothermal conditions, followed by a photochemical reduction process under xenon lamp irradiation. The prepared samples are characterized by using scanning electron microscopy, transmission electron microscopy, X‐ray diffraction, N2 adsorption‐desorption isotherms, X‐ray photoelectron spectroscopy, UV/Vis and Raman spectroscopy. Production of ?OH radicals on the surface of visible‐light illuminated TiO2 was detected by using a photoluminescence method with terephthalic acid as the probe molecule. The photocatalytic activity of as‐prepared samples was evaluated by photocatalytic decolorization of Rhodamine B (RhB) aqueous solution at ambient temperature under visible‐light irradiation. The results show that the surface plasmon absorption band of the silver nanoparticles supported on the TiO2 hollow spheres was red shifted, and a strong surface enhanced Raman scattering effect for the Ag‐TiO2 nanocomposite sample was observed. The prepared nanocomposite hollow spheres exhibits a highly visible‐light photocatalytic activity for photocatalytic degradation of RhB in water, and their photocatalytic activity is higher than that of pure TiO2 and commercial Degussa P25 (P25) powders. Especially, the as‐prepared Ag‐TiO2 nanocomposite hollow spheres at the nominal atomic ratio of silver to titanium ( R ) of 2 showed the highest photocatalytic activity, which exceeds that of P25 by a factor of more than 2.  相似文献   

3.
Three-dimensional (3D) TiO2 hollow structures have attracted much attention due to their unique properties. However, the large bandgap of (3.2 eV) results in the fact that anatase TiO2 photocatalyst can only be excited by UV light, which only accounts for 3–5% of the solar energy. On considering that nobel metallatic nanomaterials can harvest visible light due to surface plasmon resonance (SPR) effect, in this paper, three kinds of Au nanoparticles with different morphologies, namely Au nanospheres (Au-NSs), Au nanorods (Au-NRs) and Au nanopentogons (Au-NPs) were prepared and used as photosensitizers to modified TiO2 hollow nanoboxes (TiO2-HNBs), aiming to explore high efficient visible-light-responsive photocatalyst. The photoreacitivty of Au/TiO2-HNBs was evaluated by photoctalytic oxidation of Rhodamine B (RhB) and NO under visible irradiation (λ > 420 nm). It was found that the visible photoreactivity of TiO2-HNBs was greatly enhanced after modified with Au nanoparticles, and TiO2-HNBs loaded with Au-NRs exhibit the highest visible photocatalytic activity towards both RhB degradation and NO oxidation. Upon visible irradiation, SPR effect induces the production of hot electrons from the Au nanoparticles, which can further transfer to the conduction band of TiO2-HNBs to produce superoxide radicals (O2), resulting in an efficient separation of photo-generated electron-hole pairs. The photoreactivity of Au-NRs/TiO2-HNBs towards RhB degradation almost keeps unchanged even after recycling used for 5 times, indicating that it is promising to be use in practical applications.  相似文献   

4.
用酸催化溶胶-凝胶法制备了Fe3+掺杂TiO2/凹凸棒(Fe3+-TiO2/ATP)复合光催化剂,对其结构、微观形貌、光吸收性能和可见光下的光催化性能进行了表征。XRD和TEM测试结果表明,Fe3+-TiO2/ATP具有较好的热稳定性,经450 ℃热处理后的ATP晶体结构基本保持不变,锐钛矿TiO2均匀的分布在ATP表面,TiO2颗粒之间无团聚,且平均粒径小于纯TiO2。UV-Vis-DRS测试结果表明,Fe3+的掺杂可明显增强复合光催化剂对可见光的吸收,光响应范围拓展到了整个紫外-可见光区。在可见光下,Fe3+-TiO2/ATP复合光催化剂对亚甲基蓝具有很好的催化降解活性。Fe3+-TiO2/ATP的反应速率常数分别为TiO2/ATP、P25和纯TiO2的1.37、4.83和6.51倍。复合光催化剂的沉降性能优于纯TiO2和P25,易于分离。  相似文献   

5.
A novel and facile method was developed to prepare a visible‐light driven TiO2/Ag‐AgCl@polypyrrole (PPy) photocatalyst with Ag‐AgCl nanoparticles supported on TiO2 nanofibers and covered by a thin PPy shell. During the synthesis, the PPy shell and Ag‐AgCl nanoparticles were prepared simultaneously onto TiO2 nanofibers, which simplified the preparation procedure. In addition, because Ag‐AgCl aggregates were fabricated via partly etching the Ag nanoparticles, their size was well controlled at the nanoscale, which was beneficial for improvement of the contact surface area. Compared with reference photocatalysts, the TiO2/Ag‐AgCl@PPy composite exhibited an enhanced photodegradation activity towards rhodamine B under visible‐light irradiation. The superior photocatalytic property originated from synergistic effects between TiO2 nanofibers, Ag‐AgCl nanoparticles and the PPy shell. Furthermore, the TiO2/Ag‐AgCl@PPy composite could be easily separated and recycled without obvious reduction in activity.  相似文献   

6.
《中国化学会会志》2018,65(6):706-713
Because of its large bandgap, TiO2 can function only under UV light. TiO2 surface modification with noble metal nanoparticles can extend the light absorption from UV to visible light region and enhance the photocatalytic quantum yield. In this work, TiO2 nanorods (Cu/TiO2) modified by copper nanoparticles were prepared by a one‐step solvothermal method at low cost. The resultant Cu/TiO2 nanorods show excellent synergistic effect in the oxidation of methylene blue (MB) and the reduction of aqueous Cr(VI) under solar light irradiation. Mechanistic investigation suggests that the Cr(VI) species could effectively scavenge the electrons from MB in the presence of the as‐prepared photocatalyst, leading to the simultaneous removal of both pollutants. Being economically viable, environmentally sustainable, and highly efficient, the proposed photocatalyst holds promise for technologies involving simultaneous organic degradation and heavy metal removal in wastewater treatment.  相似文献   

7.
Sulfur doped ZnO/TiO2 nanocomposite photocatalysts were synthesized by a facile sol‐gel method. The structure and properties of catalysts were characterized by X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS), UV‐vis diffusive reflectance spectroscopy (DRS) and N2 desorption‐adsorption isotherm. The XRD study showed that TiO2 was anatase phase and there was no obvious difference in crystal composition of various S‐ZnO/TiO2. The XPS study showed that the Zn element exists as ZnO and S atoms form SO2?4. The prepared samples had mesoporosity revealed by N2 desorption‐adsorption isotherm result. The degradation of Rhodamine B dye under visible light irradiation was chosen as probe reaction to evaluate the photocatalytic activity of the ZnO/TiO2 nanocomposite. The commercial TiO2 photocatalyst (Degussa P25) was taken as standard photocatalyst to contrast the prepared different photocatalyst in current work. The improvement of the photocatalytic activity of S‐ZnO/TiO2 composite photocatalyst can be attributed to the suitable energetic positions between ZnO and TiO2, the acidity site caused by sulfur doping and the enlargement of the specific area. S‐3.0ZnO/TiO2 exhibited the highest photocatalytic activity under visible light irradiation after Zn amount was optimized, which was 2.6 times higher than P25.  相似文献   

8.
A visible light-activated TiO2 photocatalyst was successfully synthesized by the surface organic modification to sol-gel-hydrothermal synthesized TiO2. The surface hydroxyls of TiO2 nanoparticles reacted with the active -NCO groups of tolylene diisocyanate (TDI) to form a surface complex that was confirmed by the FT-IR and XPS spectra. Due to the existence of surface complex, the absorption edge of as-prepared TDI-modified TiO2 nanomaterial extended well into visible region. Compared with unmodified TiO2 and Degussa P25, the TDI-modified TiO2 photocatalysts showed higher activity for the photocatalytic degradation of methylene blue under visible light irradiation.  相似文献   

9.
The photocatalytic degradation for some kinds of dye-constituent aromatics with TiO2 in the presence of phosphate anions in aqueous dispersion was investigated under both visible light (λ>480 nm) and UV irradiation. The influences of phosphate anion upon the degradation of organics under these different conditions was revealed by the measurement of point of zero ξ-potential (P ZC) of TiO2, UV-VIS spectra, HPLC and LC-MS. The adsorption and photodegradation of some organics, which adsorb on the surface of TiO2 by a dominating group bearing a positive charge, was enhanced, while that of others, which adsorb on the surface of TiO2 by a dominating group bearing negative charge, was depressed by the presence of phosphate anions under UV irradiation at the experimental conditions (pH 4.3). It was confirmed that better adsorption of organics on the surface of TiO2 had an advantage in their photocatalytic degradation under UV irradiation. On the other hand, although the adsorption of rhodamine B (RhB) and methylene Blue (MB) markedly increased, their degradation under visible light irradiation was depressed in the presence of phosphate anions. It is suggested that phosphate anion greatly blocked the electron transfer from excited RhB and MB molecules as RhB and MB molecules predominantly adsorbed on the surface of TiO2 through the electrostatic interaction with surface adsorbed phosphate anions.  相似文献   

10.
Ag@AgCl修饰的锐钛矿相TiO2纳米管的制备及其光催化性能   总被引:3,自引:0,他引:3  
首先采用水热合成法和双氧水处理制备了具有锐钛矿相的TiO2纳米管,然后通过沉淀和光化学反应将Ag@AgCl纳米粒子负载于其上,从而制得TiO2纳米管负载的表面等离子体光催化剂.结果表明,经Ag@AgCl纳米粒子修饰后,锐钛矿相TiO2纳米管因表面等离子共振效应而对可见光具有明显的响应,光生电子-空穴对更容易分离,因而T...  相似文献   

11.
Visible‐light‐driven Ag/AgBr/TiO2/activated carbon (AC) composite was prepared by solgel method coupled with photoreduction method. For comparison, TiO2, TiO2/AC, and Ag/AgBr/TiO2 were also synthesized. Their characteristics were analyzed by XRD, SEM‐EDS, TG‐DSC and UV–vis techniques. Photocatalytic activity and antibacterial performance under visible‐light irradiation were investigated by ICP‐AES, ATR‐FT‐IR and spectrophotometry methods using methylene blue and Escherichia coli as target systems, respectively. The results showed that Ag/AgBr was successfully deposited on anatase TiO2/AC surface, and exhibited a distinct light absorption in the visible region. Ag/AgBr/TiO2/AC displayed excellent antibacterial performance both in dark and under visible‐light illumination. The growth of E. coli cell was inhibited in the presence of Ag/AgBr/TiO2/AC in dark. Moreover, upon visible‐light illumination, a significant damage of cell membrane was noticed. Ag/AgBr/TiO2/AC was also shown higher photocatalytic efficiency for methylene blue degradation than those of TiO2, TiO2/AC, and Ag/AgBr/TiO2. This is attributed to the synergetic effect between AC and Ag/AgBr/TiO2, of which AC acts as the role of increasing reaction areas, continuous enriching, and transferring the adsorbed MB molecules to the surface of supported photocatalysts, and the Ag/AgBr/TiO2 acts as a highly active photocatalyst for degrading MB molecules under visible‐light irradiation.  相似文献   

12.
Exploiting advanced photocatalysts under visible light is of primary significance for the development of environmentally relevant photocatalytic decontamination processes. In this study, the ionic liquid (IL), 1‐butyl‐3‐methylimidazolium tetrafluoroborate, was employed for the first time as both a structure‐directing agent and a dopant for the synthesis of novel fluorinated B/C‐codoped anatase TiO2 nanocrystals (TIL) through hydrothermal hydrolysis of tetrabutyl titanate. These TIL nanocrystals feature uniform crystallite and pore sizes and are stable with respect to phase transitions, crystal ripening, and pore collapse upon calcination treatment. More significantly, these nanocrystals possess abundant localized states and strong visible‐light absorption in a wide range of wavelengths. Because of synergic interactions between titania and codopants, the calcined TIL samples exhibited high visible‐light photocatalytic activity in the presence of oxidizing Rhodamine B (RhB). In particular, 300 °C‐calcined TIL was most photocatalytically active; its activity was much higher than that of TiO1.98N0.02 and reference samples (TW) obtained under identical conditions in the absence of ionic liquid. Furthermore, the possible photocatalytic oxidation mechanism and the active species involved in the RhB degradation photocatalyzed by the TIL samples were primarily investigated experimentally by using different scavengers. It was found that both holes and electrons, as well as their derived active species, such as .OH, contributed to the RhB degradation occurring on the fluorinated B/C‐codoped TiO2 photocatalyst, in terms of both the photocatalytic reaction dynamics and the reaction pathway. The synthesis of the aforementioned novel photocatalyst and the identification of specific active species involved in the photodegradation of dyes could shed new light on the design and synthesis of semiconductor materials with enhanced photocatalytic activity towards organic pollutants.  相似文献   

13.
以硝酸铟作为前驱体,在蒸馏水和乙二胺的混合溶剂中制备出了InOOH纳米晶,详细地考察了反应溶剂及温度对终产物的影响。利用X射线粉末衍射(XRD)、紫外-可见漫反射光谱(UV-Vis DRS)、扫描电子显微镜(SEM)和透射电镜(TEM)对样品的晶相结构、光吸收性质及其形貌进行了详细的表征。考察了样品在紫外光下及可见光下对液相中的染料罗丹明B(RhB)的光催化降解性能。发现InOOH在紫外光下可以彻底分解RhB,而在可见光下只能使RhB脱色。InOOH在紫外光和可见光下对RhB的分解遵循两种不同的反应机制。  相似文献   

14.
A novel core–shell TiO2@ZnIn2S4composite has been synthesized successfully by a simple and flexible hydrothermal route using TiO2as precursors.The as-synthesized samples were characterized by X-ray diffraction,UV–vis diffuse reflectance spectra and transmission electron microscopy.The photocatalytic properties of samples were tested by degradation of aqueous methylene blue(MB)under visible light irradiation.It was found that the as-synthesized TiO2@ZnIn2S4photocatalyst was more effcient than TiO2and ZnIn2S4in the photocatalytic degradation of MB.Moreover,TEM images confrmed the TiO2@ZnIn2S4nanoparticles possessed a well-proportioned core–shell morphology.  相似文献   

15.
The heterojunction structures of In2O3/TiO2, exhibiting visible light photocatalytic efficiency, has been synthesized by utilizing maleic acid as an organic linker to combine In2O3 and Degussa P25 (TiO2) nanoparticles. The prepared nanocomposite has been characterized by FESEM, TEM, XRD and UV?CVisible reflectance spectra. The photocatalytic efficiency of the composite photocatalyst has been investigated based on the decomposition of 2-propanol (IP) in gas phase and 1,4-dichlorobenzene (DCB) in aqueous phase under visible light (??????420?nm) irradiation. The results reveal that the In2O3/TiO2 composite photocatalyst with 7?wt% In2O3 demonstrated 6.3 times of efficiency in evolving CO2 from gaseous IP and 8.7 times of efficiency in removing aqueous DCB in compare with Degussa P25. In this In2O3/TiO2 composite system, TiO2 seems to be the principal photocatalyst whereas the function of In2O3 is to sensitize TiO2 by absorbing visible light (??????420?nm). The extraordinary high photocatalytic efficiency of this composite In2O3/TiO2 under visible light has been explained on the basis of relative energy band positions of the component semiconductors.  相似文献   

16.
A visible light-driven Bi2O3–TiO2 composite photocatalyst was prepared by an ethylene glycol-assisted sol–gel method in which ethylene glycol acted as a polycondensation agent to capture metal ions by reacting with bismuth and titanium sources via a complex polycondensation pathway. The photocatalyst was characterized by X-ray photoelectron spectroscopy, X-ray diffraction, acquisition of N2 adsorption–desorption isotherms, transmission electron microscopy, and UV–visible diffuse reflectance spectroscopy. The results revealed that the Bi2O3–TiO2 composite was of smaller particle size, greater specific surface area, and had stronger absorbance in the visible light region than pure TiO2. The photocatalytic activity of the as-prepared catalyst was evaluated by degradation of rhodamine B under visible light irradiation (λ > 400 nm); the as-prepared Bi2O3–TiO2 composite was substantially more active than pure TiO2. This was ascribed to the high surface area and the heterojunction structure.  相似文献   

17.
The successful application of ion engineering techniques for the development of TiO2 photocatalysts operating under visible and/or solar light irradiations has been summarized in this review article. First, we have physically doped various transition metal ions within a TiO2 lattice on an atomic level by using an advanced metal ion implantation method. The metal ion implanted TiO2 could efficiently work as a photocatalyst under visible light irradiation. Some field tests under solar light irradiation clearly revealed that the Cr or V ions implanted TiO2 samples showed 2–3 times higher photocatalytic reactivity than the un-implanted TiO2. Second, we have developed the visible light responsive TiO2 thin film photocatalyst by a single process using an RF-magnetron sputtering (RF-MS) deposition method. The vis-type TiO2 thin films showed high photocatalytic reactivity for various reactions such as reduction of NOx, degradation of organic compounds, and splitting of H2O under visible and/or solar light irradiations.  相似文献   

18.
以电纺TiO_2纳米纤维为基质,EDTA为鳌合剂和吸附剂,采用溶剂热法制备Bi/TiO_2复合纳米纤维光催化材料,利用X射线粉末衍射(XRD)、扫描电镜(SEM)、X射线能量色散谱(EDS)、透射电镜(TEM)、紫外-可见漫反射光谱(UV-Vis DRS)和荧光光谱(PL)等分析测试手段对样品的物相、形貌和光学性能等进行表征,以罗丹明B(Rh B)为模拟有机污染物,考察了样品的光催化性能。结果表明:EDTA在复合纳米纤维的合成过程中起到关键作用,通过改变EDTA的用量可以有效控制纤维表面构筑单质Bi纳米球的大小和覆盖密度。所制备的复合纳米纤维具有良好的可见光催化活性和稳定性,当单质Bi的负载量为65%时光催化活性最强,可见光照射180 min,RhB的降解率达到96.40%,循环使用5次降解率仍保持在91%以上。  相似文献   

19.
采用沉积-沉淀法将AgI分散到TiO2酸蚀纳米带上,然后通过光照进而分解出Ag颗粒,最终获得了Ag@AgI等离子体负载的TiO2酸蚀纳米带(AIST)。利用UV-Vis吸收光谱、XRD、SEM对产物进行表征,并研究了可见光下对甲基橙(MO)的光催化降解性能。结果表明,纳米带酸蚀后利于AgI的沉积,Ag的表面等离子体共振效应可以增强催化剂对于可见光的吸收,使可见光下AIST的光催化降解性能显著提高。  相似文献   

20.
Semiconductor‐based photocatalysis is an environmental friendly and cost‐effective technique for water treatment. Due to their unique properties, metal–organic frameworks (MOFs) are considered as ideal platform to develop composite photocatalyst. In this study, Bismuth oxychloride (BiOCl) was first attempt to be incorporated with highly stable MOFs, UiO‐66(Zr) by hydrothermal reaction. Different characterization methods including X‐ray diffraction, Scanning electron microscopy, Fourier transform infrared spectroscope, X‐ray photoelectron spectroscopy had been used to prove the successful synthesis of composite photocatalyst. The resultant BiOCl/UiO‐66 composite showed higher photodegradation performance of Rhodamine B (RhB) under ultraviolet and visible light irradiation than that of pristine materials and their mechanically mixed sample. In addition, the composite exhibited good structural stability and reusability. The photocatalytic mechanism of RhB degradation over the composite under visible light proceeded via a photosensitization process. A better adsorptivity of RhB and effective electron transfer within the hybrid material might be responsible for the enhanced photocatalytic performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号