首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mononuclear transition metal(II) complexes of the type M(L)2?2H2O (where M = Co, Ni, Cu, Zn) have been synthesized from uninegative Schiff base ligands (HL1–HL4) designed by condensation of 4‐fluorobenzylamine with 2‐hydroxy‐1‐naphthaldehyde/3,5‐dichlorosalicylaldehyde/3,5‐dibromosalicylaldehyde/3‐bromo‐5‐chlorosalicylaldehyde. The compounds were successfully characterized using spectroscopic and physiochemical methods together with elemental analysis. Spectroscopic elucidation indicates a monobasic bidentate nature of ligands coordinated via deprotonated phenolic oxygen and azomethine nitrogen atom which suggests an octahedral geometry around the central metal ions. The complexes and ligands were screened for their in vitro antimicrobial activity against bacterial and fungal strains, the zinc(II) complexes being more active against the tested microbial strains. Further, the metal complexes were found to be more active than the uncomplexed ligands due to chelation process and, moreover, the complexes were more active against fungal strains than bacterial strains. Cytotoxic activities of all compounds were evaluated towards human alveolar adenocarcinoma epithelial cell line (A549), human breast adenocarcinoma cell line (MCF7), human prostate cancer cell line (DU145) and one normal human lung cell line (MRC‐5) using MTT colorimetric assay with doxorubicin as a standard. The zinc complexes were most active against the cancer cell lines and also found to be less toxic against MRC‐5 normal cell line than standard doxorubicin.  相似文献   

2.
A series of metal complexes of Schiff bases derived from condensation of sulfa-guanidine with 1-benzoylacetone (H2L1), 2-hydroxybenzophenol (H2L2), dibenzoylmethane (H2L3), 5-methylisatine (H2L4), and 1-methylisatine (H2L5) have been synthesized. The complexes are characterized by elemental analysis, molar conductance, magnetic moment measurements, IR, UV–Vis, 1H NMR, and ESR spectra, as well as thermogravimetric analysis. The low molar conductance values indicate the complexes are nonelectrolytes. IR and 1H NMR spectra show that H2L1–H2L5 are coordinated to metal ions by two bidentate centers. Mn(II), Co(II), Ni(II), and Cu(II) complexes display paramagnetic behavior, whereas the Zn(II)-complex was diamagnetic. All studies confirm the formation of an octahedral geometry for [Cu2L1(AcO)2(H2O)6] · 3H2O (1), [Mn2L4(AcO)2(H2O)6] · 2H2O (6), [Ni2L4(AcO)2(H2O)6] · 2H2O (8), a tetrahedral geometry for [Cu2L2(AcO)2(H2O)2] (2), [Cu2(L4)2] (4), [Co2(L4)2] · 2H2O (7) and [ZnHL4(AcO)(H2O)] · 2H2O (9) and a trigonal bipyramid geometry for [Cu2L3(AcO)2(H2O)4] (3) and [Cu2HL5(AcO)3(H2O)3] · H2O (5). H2L4 was most effective on Gram negative, Gram positive bacteria, and fungi (diameters inhibition zone ranged between 10.5–27.5 mm) after 24 and 48 h, respectively. Complex 8 showed moderate antimicrobial activity. Its minimum inhibitory concentration (MIC) against Escherichia coli, Bacillus subtilis, Candida albicans and Aspargllus flavas was 20 mg L–1. The compound proved to be of moderate toxicity and its LD50 was 20 mg L–1.  相似文献   

3.
A ferrocenyl ligand was prepared from condensation of l,l′‐diacetylferrocene with 2‐amino‐5‐methylthiazole, to give the ligand. This ligand forms 1:1 complexes with lead(II), cobalt(II), nickel(II), copper(II) and zinc(II) in good yield. Characterization of the ligand and complexes was carried out using IR, NMR, electronic absorption, magnetic susceptibility, molar conductivity and elemental analysis. Anticancer activity of the prepared ligand and its complexes against breast cancer cell line MCF‐7 was determined. The anticancer activity of the new complexes was accompanied by significant increase in the activity of superoxide dismutase, with a parallel decrease in the activities of catalase and glutathione peroxidase and reduced glutathione level. Accordingly, the overproduction of free radicals allowed reactive oxygen species‐mediated cancer cell death. The results suggest that the complexes possess significant anticancer activity comparable to cisplatin. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
A series of triazole‐derived Schiff bases (L1–L5) and their oxovanadium(IV) complexes have been synthesized. The chemical structures of Schiff bases were characterized by their analytical (CHN analysis) and spectral (IR, 1H and 13C NMR and mass spectrometry) data, and oxovanadium(IV) complexes were elucidated by their physical (magnetic susceptibility and conductivity), analytical (CHN analysis), conductance measurements and electronic spectral data. The molar conductivity data indicate the oxovanadium(IV) complexes to be non‐electrolyte. The Schiff bases act as bidentate and coordinate with the oxovanadium(IV)‐forming stoichiometry of a complex as [M (L‐H)2] where M = VO and L = L1–L5 in a square‐pyramidal geometry. The agar well diffusion method was used for in vitro antibacterial screening against E. coli, S. flexenari, P. aeruginosa, S. typhi, S. aureus and B. subtilis and for antifungal activity against T. longifucus, C. albican, A. flavus, M. canis, F. solani and C. glaberata. The biological activity data show the oxovanadium(IV) complexes to be more antibacterial and antifungal than the parent Schiff bases against one or more bacterial and fungal strains. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
A series of twenty compounds inclusive of bidentate Schiff bases derived from condensation of 4‐methyl‐3‐thiosemicarbazide with substituted derivatives of napthaldehyde/benzaldehyde/salicylaldehyde and their mononuclear Co (II), Ni (II), Cu (II) and Zn (II) complexes in molar ratio (1:1) were synthesized and characterized. The coordination behavior, modes of bonding and overall geometry of the compounds was known from the elemental analysis, spectral techniques (IR, UV–Vis, 1H NMR, 13C NMR, ESR and ESI‐mass), magnetic moment measurements, molar conductance, thermal and powder XRD studies. The studies revealed octahedral geometry for all the complexes where ligands coordinated in a neutral bidentate manner (NS) via nitrogen atom of azomethine group and sulphur atom of thione group with the metal centre. In vitro biological effects of the compounds were tested against four bacterial species and two fungal strains. The results indicated that the metal complexes showed a marked enhancement in biocidal activity in comparable with the parent Schiff bases. In vitro anticancer activity against the malignant tumor cell lines; human alveolar adenocarcinoma epithelial cell line (A549), human breast adenocarcinoma cell line (MCF7), human prostate cancer cell line (DU145) and human normal lung cell line (MRC‐5) using MTT assay, exposed compound 16 as a leading member with lowest IC50 value of 10.6 ± 0.14 μM against (A549) cell line.  相似文献   

6.
The work involves synthesis of novel Schiff base derivatives containing a pyrimidine unit starting with chalcones. 4-Aminoacetophenone was reacted with 4-nitrobenzaldehyde or 4-chlorobenzaldehyde in basic medium giving chalcones, [I]a and [I]b, respectively, by Claisen-Schemidt reaction. The chalcones [I]a and [I]b were reacted with urea in HCl medium giving oxopyrimidines, [II]a and [II]b. They were also reacted with thiourea in basic medium to give thioxopyrimidines, [III]a and [III]b. The novel mono and bis Schiff bases, [VIII]na, [VIII]nb, [IX]na, [IX]nb, [X]na, [X]nb, [XI]na, and [XI]nb were synthesized by the reaction of pyrimidine derivatives; oxopyrimdines, [II]a and [II]b and thioxopyrimidines, [III]a and [III]b with 4-(4′-n-alkoxybenzoloxy)benzaldehyde [VI] and polymethylene-α,ω-bis-4-oxybenzaldehydes [VII]m, respectively, in dry benzene using drops of glacial acetic acid as a catalyst. The synthesized compounds were characterized by melting points, elemental analysis, FTIR, and 1H NMR spectroscopy.  相似文献   

7.
Four novel ON donor Schiff bases (E)-3-((4-phenoxyphenylimino)methyl)benzene-1,2-diol (HL1),(E)-3-((4-(4-biphenyloxy)phenyliminomethyl)benzene-1,2-diol (HL2), (E)-3-((4-naphthoxyphenylimino)methyl)benzene-1,2-diol (HL3), (E)-3-((4-(2-naphthoxy)phenylimino)methyl)benzene-1,2-diol (HL4) and their copper(II) complexes bis((E)-3-((4-phenoxyphenylimino)methyl)benzene-1,2-diol) copper(II) (Cu(L1)2) bis((E)-3-((4-(4-biphenyloxy)phenylimino)methyl)benzene-1,2-diol) copper(II) (Cu(L2)2), bis((E)-3-((4-naphthoxyphenylimino)methyl)benzene-1,2-diol) copper(II) (Cu(L3)2), bis((E)-3-((4-(2-naphthoxy)phenylimino)methyl)benzene-1,2-diol) copper(II) (Cu(L4)2) have been synthesized and characterized by spectroscopic (FTIR, NMR, UV–visible) and elemental analysis. The crystal structures of HL1, HL2, HL3, and HL4 have been determined, which reveal intramolecular N-H?O (HL1, HL2, HL3, and HL4) hydrogen bonds in the solid state. Keto-amine and enol-imine tautomerism is exhibited by the Schiff bases in solid and solution states. The Schiff bases and their copper(II) complexes have been screened for their biological activities. In antimicrobial assays (antibacterial and antifungal), HL4 showed promising results against all strains through dual inhibition property while the rest of the compounds showed activity against selective strains. On the other hand, in cytotoxic, DPPH, and inhibition of hydroxyl (OH) free radical-induced DNA damage assays, the results were found significantly correlated with each other, i.e. the ligands HL1 and HL2 showed moderate activity while their complexes Cu(L1)2 and Cu(L2)2 exhibited prominent increase in activity. As the results of these assays are supporting each other, it represents the strong positive correlation and antioxidant nature of investigated compounds.  相似文献   

8.
Indium(III) chloride tetrahydrate and Schiff-base ligands derived from adamantaneamine and 3-/4-methoxysalicylaldehyde gave two complexes, C22H32Cl3InN2O3 (1) and C36H44Cl3InN2O4 (2), respectively. The complexes were characterized by IR, 1H NMR, elemental analysis, molar conductance, thermal analysis, and single-crystal X-ray diffraction. Complex 1 crystallizes in the monoclinic system, P21/n space group with the asymmetric unit consisting of one indium(III), one N-(3-methoxysalicylidene)-aminoadamantane (L1), three chlorides and one N,N-dimethylformamide molecule. The indium is six-coordinate with reversed triangular-prism geometry via three oxygens and three chlorides. Complex 2 crystallizes in the triclinic system, P 1 space group; the asymmetric unit consists of one indium(III), two N-(4methoxysalicylidene)-aminoadamantane (L2), and three chlorides. The indium is five-coordinate with distorted trigonal-bipyramidal geometry via two oxygens and three chlorides. Antibacterial activities of the complexes have been investigated against Escherichia coli and Staphylococcus aureus.  相似文献   

9.
Ruthenium(III) complexes of three tetradentate Schiff bases with N2O2 donors formulated as [RuCl(LL1)(H2O)], [RuCl(LL2)(H2O)] and [RuCl(LL3)(H2O)] were synthesized and characterized by elemental analyses, molar conductance, FTIR, and electronic spectral measurements. The FTIR data showed that the tetradentate Schiff base ligands coordinate to Ru ions through the azomethine nitrogen and enolic oxygen. The antioxidant activities of the complexes were investigated through scavenging activity on 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2′-azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radicals. The DPPH activity for [RuCl(LL2)(H2O)] with IC50 = 0.031 mg mL?1 was higher than the values obtained for the other Ru(III) compounds. The study revealed that the synthesized Ru(III) complexes of the tetradentate Schiff base exhibited strong scavenging activities against DPPH and moderate against ABTS radicals. In addition, the antiproliferative studies of the complexes were also tested against human renal cancer cells (TK10), human melanoma cancer cells (UACC62), and human breast cancer cells (MCF7) using the SRB assay. The results indicated that the Ru(III) complexes showed low anticancer activities against the tested human cancer cell lines.  相似文献   

10.
Four different mononuclear palladium(II) complexes of 3‐acetyl‐8‐methoxycoumarin Schiff bases were synthesized and characterized by spectrochemical techniques. Further analysis through X‐ray crystallography confirmed the structures of the complexes. Their interactive ability with Calf Thymus DNA and protein (Bovine Serum Albumin and Human Serum Albumin) were investigated by means of absorption and emission methods. The intercalative mode of binding with DNA was supported by EB displacement studies and viscosity measurements. Configurational changes that occurred in the proteins have been analysed with the help of 3D fluorescence studies. The complexes were shown to have good antimicrobial activity against the tested bacterial and fungal pathogens. In addition, antiproliferative activity of the complexes was evaluated on A549 and MCF‐7 cell lines and the complexes were comparatively more active than the standard drug cisplatin. Among the compounds, complex 3 was the most effective against MCF‐7 (IC50 value of 5.20 ± 0.15 μM) and A549 (5.09 ± 0.13 μM) compared with the other complexes 1 (6.48 ± 0.17 μM; 5.98 ± 0.09 μM), 2 (5.53 ± 0.12 μM; 5.85 ± 0.11 μM), 4 (6.73 ± 0.19 μM; 6.63 ± 0.16 μM) and cisplatin (16.79 ± 0.08 μM; 15.10 ± 0.05 μM) respectively. LDH and NO release assays confirmed the cytotoxic potential of the synthesized complexes.  相似文献   

11.
Nine platinum(II) complexes containing reduced amino acid ester Schiff bases were synthesized and characterized using spectroscopy (1H NMR, 13C NMR, infrared), elemental analysis and molar conductivity. The interaction of these complexes with salmon sperm DNA was investigated by means of ultraviolet and circular dichroism spectroscopies. The potential antitumor activity of all compounds was tested in vitro on HeLa and A549 tumor cell lines. Almost all the complexes exhibited better cytotoxic activity than cisplatin against these cell lines.  相似文献   

12.
New mixed ligand complexes of transition metals were synthesized from a Schiff base (L1) obtained by the condensation reaction of oxamide and furfural as primary ligand and 2,2′‐bipyridine (L2) as secondary ligand. The ligands and their metal complexes were studied using various spectroscopic methods. Also thermal analyses were conducted. The mixed ligand complexes were found to have formulae [M(L1)(L2)]Clm n H2O (M = Cr(III) and Fe(III): m  = 3, n  = 0; M = Cu(II) and Cd(II): m  = 2, n  = 1; M = Mn(II), Co(II), Ni(II) and Zn(II): m  = 2, n  = 0). The resultant data revealed that the metal complexes have octahedral structure. Also, the mixed ligand complexes are electrolytic. The biological and anticancer activities of the new compounds were tested against breast cancer (MCF‐7) and colon cancer (HCT‐116) cell lines. The results showed high activity for the synthesized compounds.  相似文献   

13.
New metal based triazoles (1–12) have been synthesized by the interaction of novel Schiff base ligands (L1–L3) with the Co(II), Ni(II), Cu(II) and Zn(II) metal ions. The Schiff base ligands and their all metal(II) complexes have been thoroughly characterized using various physical, analytical and spectroscopic techniques. In vitro bacterial and fungal inhibition studies were carried out to examine the antibacterial and antifungal profile of the Schiff bases in comparison to their metal(II) complexes against two Gram‐positive, four Gram‐negative and six fungal strains. The bioactivity data showed the metal(II) complexes to have more potent antibacterial and antifungal activity than their uncomplexed parent Schiff bases against one or more bacterial and fungal species. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
In this study, a green and high yielding synthesis of novel pyrazoline‐containing Schiff bases via a one‐pot pseudo five‐component condensation reaction under catalyst‐free conditions in EtOH at room temperature is described. Initially, the reaction of 1,1‐bis(methylthio)‐2‐nitroethylene (BMTNE), with NH2NH2.H2O is used for situ preparation of 1,1‐dihydrazino‐2‐nitroethylene (DHNE). Then, wide varieties of aldehydes are added to the mixture to afford the desired products good to excellent yields. This synthetic route is presented with several unique merits such as simplicity in operation and workup, readily presented starting materials, and high functional group tolerance. Additionally, the stoichiometric complex formation of these Schiff bases as ligand (L) with various metal ions [Mn(OAc)2, Cu(OAc)2 and Zn(OAc)2] in general molecular formula [ML] is examined via Job's method. Subsequently, theoretical analysis of the product is accomplished using density functional theory (DFT) calculations. According to the frontier molecular orbital (FMO) analysis, it is found that the aryl group linked to the imine bond contributes as an electron donor in the ligand–metal complex.  相似文献   

15.
Three ferrocenyl Schiff bases containing a phenol moiety have been formed by 1:1 molar condensation of acetylferrocene with 2‐aminophenol, 2‐amino‐5‐picoline or 2‐amino‐5‐chlorophenol. These ligands form 2:1 complexs with cobalt(II), copper(II), nickel(II), and zinc(II) ions. From the different spectral data, it was found that coordination of the ligands with the metal ions takes place via the azomethine nitrogen atoms and the deprotonated oxygen of the phenol groups. These ligands and their complexes have been characterized by IR, 1H NMR, 13C NMR, UV–Vis spectra, and elemental analysis. The spectral data of the ligands and their complexes are discussed in connection with the structural changes due to complexation. The complexes prepared showed good antimicrobial activity against Escherichia coli, Bacillus subtilus, and Candida albicans. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

16.
Equimolar reactions of Ph n M(OPr i )2 (where M?=?As and Sb) with Schiff bases [OHC6H4CH=N(R)OH] in benzene solution yield organoarsenic and -antimony derivatives, (where M?=?As and Sb; n?=?1 and 3; R?=?–CH2CH(CH3)–, –(CH2)3–, –(CH2)2–, and –C(CH3)2CH2–). All these derivatives have been characterized by elemental analyses and molecular weight measurements, and structures have been proposed on the basis of IR, NMR (1H and 13C), and FAB-mass studies. Schiff bases and their corresponding organoantimony derivatives have been screened for antimicrobial activity against Aspergillus flavus (fungus) and Escherichia coli (bacteria).  相似文献   

17.
A series of curcuminoids (L1–L7) and their corresponding (η6p ‐cymene)RuII(Cur)Cl complexes ( 1 – 7 ) were synthesized and characterized using 1H NMR spectroscopy, elemental analysis and high‐resolution electrospray ionization mass spectrometry. The molecular structures of L2, L4, 1 and 4 were determined using single‐crystal X‐ray diffraction analysis. The stability of 1 – 7 was investigated by monitoring their UV profiles. The compounds were further evaluated for their in vitro antiproliferative activities against the HepG2 human liver and HeLa human cervical cancer cell lines and HEK‐293 T noncancerous cell line.  相似文献   

18.
Synthesis of ferrocenyl Schiff bases ( 1–6 ) was carried out by the condensation reaction of 4‐ferrocenyl aniline with different substituted aromatic aldehydes and acetyl acetone. Compounds were characterized by physical measurements, elemental analysis, FT‐IR, 1H‐NMR and 13C‐NMR spectroscopy. Single crystal X‐ray analysis of compound 2 showed the co‐planarity of both aromatic rings connected by a C–N double bond. Compounds demonstrated reversible one‐electron redox behavior and their peak currents were found to increase linearly with the square root of the sweep rate ν1/2. The overall electrode processes were found to be diffusion controlled. Compounds 1 and 4 showed low cytotoxicity and appreciable antifungal, antioxidant and DNA protection activities. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
The synthesis and characterization of Ru (II) terpyridine complexes derived from 4′ functionalized 2,2′:6′,2″‐terpyridine (tpy) ligands are reported. The heteroleptic complexes comprise the synthesized ligands 4′‐(2‐thienyl)‐ 2,2′:6′,2″‐terpyridine) or (4′‐(3,4‐dimethoxyphenyl)‐2,2′:6′,2″‐terpyridine and (dimethyl 5‐(pyrimidin‐5‐yl)isophthalate). The new complexes [Ru(4′‐(2‐thienyl)‐2,2′:6′,2″‐terpyridine)(5‐(pyrimidin‐5‐yl)‐isophthalic acid)Cl2] ( 9 ), [Ru(4′‐(3,4‐dimethoxyphenyl)‐2,2′:6′,2″‐terpyridine)(5‐(pyrimidin‐5‐yl)‐isophthalic acid)Cl2] ( 10 ), and [Ru(4′‐(2‐thienyl)‐2,2′:6′,2″‐terpyridine)(5‐(pyrimidin‐5‐yl)‐isophthalic acid)(NCS)2] ( 11 ) were characterized by 1H‐ and 13C‐NMR spectroscopy, C, H, N, and S elemental analysis, UPLC‐ESI‐MS, TGA, FT‐IR, and UV‐Vis spectroscopy. The biological activities of the synthesized ligands and their Ru (II) complexes as anti‐inflammatory, antimicrobial, and anticancer agents were evaluated. Furthermore, the toxicity of the synthesized compounds was studied and compared with the standard drugs, namely, diclofenac potassium and ibuprofen, using hemolysis assay. The results indicated that the ligands and the complex 9 possess superior anti‐inflammatory activities inhibiting albumin denaturation (89.88–100%) compared with the standard drugs (51.5–88.37%) at a concentration of 500 μg g?1. These activities were related to the presence of the chelating N‐atoms in the ligands and the exchangeable chloro‐ groups in the complex. Moreover, the chloro‐ and thiophene groups in complex 9 produce a higher anticancer activity compared with its isothiocyanate derivative in the complex 11 and the 3,4‐dimethoxyphenyl moiety in complex 10 . Considering the toxicity results, the synthesized ligands are nontoxic or far less toxic compared with the standard drugs and the metal complexes. Therefore, these newly synthesized compounds are promising anti‐inflammatory agents in addition to their moderate unique broad antimicrobial activity.  相似文献   

20.
Eight chromium(III) complexes of tetradentate Schiff bases have been prepared in situ by condensing of a substituted salicylaldehyde compound with ethylenediamine. These were characterized by elemental analysis, m.p., IR, molar conductivity, magnetic moment measurements, and electronic spectra. The free ligands were also characterized by 1H and 13C NMR spectra. The 13C NMR spectra are discussed in terms of possible substituent effects. The IR and electronic spectra of the free ligand and the complexes are compared and discussed. The electrospray ionization (ESI) mass spectra of four free ligands and their complexes were measured. The deconvolution of the visible spectra of the complexes, C2v symmetry, in DMSO yields three peaks at ca. 15 600–17 600, 18 400–20 400 and 20 000–23 100, and are assigned to the three d–d transitions, 4B1g → 4Eg(4T2g); 4B1g → 4B2g(4T2g); 4B1g → 4Eg(4T1g), respectively. The complexes showed magnetic moment in the range of 3.5–4.2 BM which corresponds to three unpaired electrons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号