首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The characterization of the complexes [Cu2(2‐Clnic)4(H2O)2] ( 1 ), [Cu(2,6‐Cl2nic)2(H2O)2] ( 2 ) and [Cu(5‐Brnic)2(H2O)2]n ( 3 ) (where 2‐Clnic = 2‐chloronicotinate, 2,6‐Cl2nic = 2,6‐dichloronicotinate or 5‐Brnic = 5‐bromonicotinate) was based on elemental analysis, IR, electronic and EPR spectra, and magnetic susceptibility. Complex 1 was also studied by X‐ray analysis at 298 1a and 80 K 1b . The complex 1 contains a dinuclear Cu‐acetate molecular structure in which the carboxyl groups of the 2‐chloronicotinate ligands act as bridges and water molecules are at apical positions. The stereochemistry about Cu atom at both temperatures is typical for square pyramidal geometry with CuO4O chromophore. The Cu‐Cu distance is 2.6513(8) and 2.6382(6) Å for 1a and 1b , respectively. The Cu atoms are displaced by 0.2069(9) and 0.1973(7) Å, respectively, from the plane containing four oxygen atoms bonded to the Cu atom toward the apical water molecules. Strong and weak hydrogen bonds as well as C–Cl···π interactions in the crystal structure are discussed as well. Both complexes, monomeric [Cu(2,6‐Cl2nic)2(H2O)2] ( 2 ) and polymeric [Cu(5‐Brnic)2(H2O)2]n ( 3 ), possess octahedral copper(II) stereochemistry with differing tetragonal distortions.  相似文献   

2.
1‐(2‐Hydroxyethyl)‐3‐nitro‐1, 2, 4‐triazole (hnt), prepared by alkylation of 3‐nitro‐1, 2, 4‐triazole with 2‐chloroethanol, was found to react with copper(II) chloride and copper(II) perchlorate in acetonitrile/ethanol solutions giving complexes [Cu2(hnt)2Cl4(H2O)2] and[Cu(hnt)2(H2O)3](ClO4)2, respectively. They are the first examples of coordination compounds with a neutral N‐substituted 3‐nitro‐1, 2, 4‐triazole ligand. 1‐(2‐Hydroxyethyl)‐3‐nitro‐1, 2, 4‐triazole and the obtained complexes were characterized by NMR and IR spectroscopy, X‐ray, and thermal analyses. [Cu2(hnt)2Cl4(H2O)2] presents a dinuclear chlorido‐bridged complex in which hnt acts as a chelating bidentate ligand, coordinated to the metal by a nitrogen atom of the triazole ring and an oxygen atom of the nitro group, and the copper atoms are inconsiderably distorted octahedral coordination. [Cu(hnt)2(H2O)3](ClO4)2comprises a mononuclear complex cation, in which two nitrogen atoms of two hnt ligands in trans configuration and three water oxygen atoms form a square pyramidal environment around the copper atom, which is completed to an distorted octahedron with a bifurcated vertex due to two additional elongated Cu–O bonds with two nitro groups. In both complexes, Cu–O bonds with the nitro groups may be considered as semi‐coordinated.  相似文献   

3.
Three novel 5‐R‐tetrazolato complexes (R = Me, Ph, 4‐Py), namely [Zn2(MeCN4)4(DMSO)2] ( 1 ), [Cu2(PhCN4)4(en)2] · 2DMSO ( 2 ), and [Cu(4‐PyCN4)2(DMSO)2] · 4DMSO ( 3 ), were isolated as unexpected products under attempts to prepare heterometallic tetrazolates using a direct synthesis strategy in the Cu0‐ZnO‐en‐RCN4H‐DMSO system (en = ethylenediamine). The prepared compounds were characterized by elemental, single‐crystal X‐ray, and thermal analyses, and IR spectroscopy. Variation of the 5‐substituent of the tetrazole ring causes different composition of complexes 1 – 3 and diverse coordination modes of 5‐R‐tetrazolato ligands. Complex 1 is a 3D coordination polymer due to N1, N4‐bridging of 5‐methyltetrazolato anions. Complex 2 , with en as a coligand, has a dinuclear structure with two copper atoms linked together by two 5‐phenyltetrazolato ligands by tetrazole N2, N3 bridges. Complex 3 represents a 2D coordination polymer, formed due to 5‐(4‐pyridyl)tetrazolato bridges between adjacent copper atoms (with the tetrazole and pyridine rings nitrogen atoms as coordination centers). DMSO molecules, included in all the compounds, are solvate and/or coordinated ones.  相似文献   

4.
Dinuclear Palladium(II), Platinum(II), and Iridium(III) Complexes of Bis[imidazol‐4‐yl]alkanes The reaction of bis(1,1′‐triphenylmethyl‐imidazol‐4‐yl) alkanes ((CH2)n bridged imidazoles L(CH2)nL, n = 3–6) with chloro bridged complexes [R3P(Cl)M(μ‐Cl)M(Cl)PR3] (M = Pd, Pt; R = Et, Pr, Bu) affords the dinuclear compounds [Cl2(R3P)M–L(CH2)nL–M(PR3)Cl2] 1 – 17 . The structures of [Cl2(Et3P)Pd–L(CH2)3L–Pd(PEt3)Cl2] ( 1 ), [Cl2(Bu3P)Pd–L(CH2)4L–Pd(PBu3)Cl2] ( 10 ), [Cl2(Et3P)Pd–L(CH2)5L–Pd(PEt3)Cl2] ( 3 ), [Cl2(Et3P)Pt–L(CH2)3L–Pt(PEt3)Cl2] ( 13 ) with trans Cl–M–Cl groups were determined by X‐ray diffraction. Similarly the complexes [Cl2(Cp*)Ir–L(CH2)nL–Ir(Cp*)Cl2] (n = 4–6) are obtained from [Cp*(Cl)Ir(μ‐Cl)2Ir(Cl)Cp*] and the methylene bridged bis(imidazoles).  相似文献   

5.
Coordination Polymeric 1, 2‐Dithiooxalato and 1, 2‐Dithiosquarato Complexes. Syntheses and Structures of [BaCr2(bipy)2(1, 2‐dtox)4(H2O)2], [Ni(cyclam)(1, 2‐dtsq)]·2DMF, [Ni(cyclam)Mn(1, 2‐dtsq)2(H2O)2]·2H22, and [H3O][H5O2][Cu(cyclam)]3[Cu2(1, 2‐dtsq)3]2 1, 2‐Dithioxalate and 1, 2‐dithiosquarate ions have a pair of soft and hard donor centers and thus are suited for the formation of coordination polymeric complexes containing soft and hard metal ions. The structures of four compounds with building blocks containing these ligands are reported: In [BaCr2(bipy)2(1, 2‐dtox)4(H2O)2] Barium ions and pairs of Cr(bipy)(1, 2‐dtox)2 complexes form linear chains by the bisbidentate coordination of the dithiooxalate ligands towards Ba2+ and Cr3+. In [Ni(cyclam)(1, 2‐dtsq)]·2DMF short NÖH···O hydrogen bonds link the NiS2N4‐octahedra with C2v‐symmetry to an infinite chain. In [Ni(cyclam)Mn(1, 2‐dtsq)2(H2O)2]·2H2O the 1, 2‐dithiosquarato ligand shows a rare example of S‐coordination towards manganese(II). The sulfur atoms of cis‐MnO2S4‐polyedra are weakly coordinated towards the axial sites of square‐planar NiN4‐centers, thus forming a zig‐zag‐chain of Mn···Ni···Mn···Ni polyhedra. [H3O][H5O2][Cu (cyclam)]3[Cu2(1, 2‐dtsq)3]2 contains square planar [CuII(cyclam)]2+ ions and dinuclear [CuI2(1, 2‐dtsq)3]4— ions. Here each copper atom is trigonally planar coordinated by S‐donor atoms of the ligands. The Cu…Cu distance is 2.861(4)Å.  相似文献   

6.
A pair of novel thiocyanate‐bridged polynuclear copper(II) complexes, [Cu2(BCP)2(NCS)2]n ( 1 ) and [Cu2(BCP)2(MeOH)(NCS)2]2 ( 2 ) [BCP = 4‐bromo‐2‐(cyclopropyliminomethyl)phenolate], have been obtained from an identical synthetic procedure and starting materials using solvents as the only independent variable. Complex 1 was synthesized and crystallized using EtOH as the solvent, while complex 2 was synthesized and crystallized using MeOH as the solvent. Both complexes show novel self‐assembled supramolecular structures in their crystals as elucidated by X‐ray analyses. The polymeric dinuclear complex 1 contains [Cu2(BCP)2(NCS)2] units as the building blocks, crystallizes in the Pbca space group. The monomeric tetranuclear complex 2 contains [Cu2(BCP)2(MeOH)(NCS)2] units as the building blocks, crystallizes in the P21/n space group.  相似文献   

7.
1‐tert‐Butyl‐1H‐1,2,4‐triazole (tbtr) was found to react with copper(II) chloride or bromide to give the complexes [Cu(tbtr)2X2]n and [Cu(tbtr)4X2] (X = Cl, Br). 1‐tert‐Butyl‐1H‐tetrazole (tbtt) reacts with copper(II) bromide resulting in the formation of the complex [Cu3(tbtt)6Br6]. The obtained crystalline complexes as well as free ligand tbtr were characterized by elemental analysis, IR spectroscopy, thermal and X‐ray analyses. For free ligand tbtr, 1H NMR and 13C NMR spectra were also recorded. In all the complexes, tbtr and tbtt act as monodentate ligands coordinated by CuII cations via the heteroring N4 atoms. The triazole complexes [Cu(tbtr)2Cl2]n and [Cu(tbtr)2Br2]n are isotypic, being 1D coordination polymers, formed at the expense of single halide bridges between neighboring copper(II) cations. The isotypic complexes [Cu(tbtr)4Cl2] and [Cu(tbtr)4Br2] reveal mononuclear centrosymmetric structure, with octahedral coordination of CuII cations. The tetrazole compound [Cu3(tbtt)6Br6] is a linear trinuclear complex, in which neighboring copper(II) cations are linked by single bromide bridges.  相似文献   

8.
Hereby we present the synthesis of several ruthenium(II) and ruthenium(III) dithiocarbamato complexes. Proceeding from the Na[trans‐RuIII(dmso)2Cl4] ( 2 ) and cis‐[RuII(dmso)4Cl2] ( 3 ) precursors, the diamagnetic, mixed‐ligand [RuIIL2(dmso)2] complexes 4 and 5 , the paramagnetic, neutral [RuIIIL3] monomers 6 and 7 , the antiferromagnetically coupled ionic α‐[RuIII2L5]Cl complexes 8 and 9 as well as the β‐[RuIII2L5]Cl dinuclear species 10 and 11 (L=dimethyl‐ (DMDT) and pyrrolidinedithiocarbamate (PDT)) were obtained. All the compounds were fully characterised by elemental analysis as well as 1H NMR and FTIR spectroscopy. Moreover, for the first time the crystal structures of the dinuclear β‐[RuIII2(dmdt)5]BF4 ? CHCl3 ? CH3CN and of the novel [RuIIL2(dmso)2] complexes were also determined and discussed. For both the mono‐ and dinuclear RuII and RuIII complexes the central metal atoms assume a distorted octahedral geometry. Furthermore, in vitro cytotoxicity of the complexes has been evaluated on non‐small‐cell lung cancer (NSCLC) NCI‐H1975 cells. All the mono‐ and dinuclear RuIII dithiocarbamato compounds (i.e., complexes 6 – 10 ) show interesting cytotoxic activity, up to one order of magnitude higher with respect to cisplatin. Otherwise, no significant antiproliferative effect for either the precursors 2 and 3 or the RuII complexes 4 and 5 has been observed.  相似文献   

9.
The synthesis and characterization of mononuclear tetrakis‐aziridine nickel(II ) and copper(II ) complexes as well as of a dinuclear bis‐aziridine copper(II ) complex are described. The reactions of anhydrous MCl2 (M = NiII, CuII) with aziridine (= az = C2H4NH, C2H3MeNH, CH2CMe2NH) in CH2Cl2 at room temperature in a 1:5 and 1:2 molar ratio, respectively, afforded the tetrakis‐aziridine complexes [M(az)4Cl2] (M = Ni, Cu) or the dimeric bis‐aziridine complex [Cu(az)2Cl2]2. After purification, all of the complexes were fully characterized. The single crystal structure analysis revealed two different coordination modes. Whereas both nickel(II ) complexes can be classified as showing an elongated octahedral structure, copper(II ) complexes show either an elongated octahedral or a square pyramidal arrangement forming dimers with chlorido bridges in axial positions. Furthermore, the results of magnetic measurements of the nickel(II ) and copper(II ) compounds are presented.  相似文献   

10.
The reaction of the aryl‐oxide ligand H2L [H2L = N,N‐bis(3, 5‐dimethyl‐2‐hydroxybenzyl)‐N‐(2‐pyridylmethyl)amine] with CuSO4 · 5H2O, CuCl2 · 2H2O, CuBr2, CdCl2 · 2.5H2O, and Cd(OAc)2 · 2H2O, respectively, under hydrothermal conditions gave the complexes [Cu(H2L1)2] · SO4 · 3CH3OH ( 1 ), [Cu2(H2L2)2Cl4] ( 2 ), [Cu2(H2L2)2Br4] ( 3 ), [Cd2(HL)2Cl2] ( 4 ), and [Cd2(L)2(CH3COOH)2] · H2L ( 5 ), where H2L1 [H2L1 = 2, 4‐dimethyl‐6‐((pyridin‐2‐ylmethylamino)methyl)phenol] and H2L2 [H2L2 = 2‐(2, 4‐dimethyl‐6‐((pyridin‐2‐ylmethylamino)methyl)phenoxy)‐4, 6‐dimethylphenol] were derived from the solvothermal in situ metal/ligand reactions. These complexes were characterized by IR spectroscopy, elementary analysis, and X‐ray diffraction. A low‐temperature magnetic susceptibility measurement for the solid sample of 2 revealed antiferromagnetic interactions between two central copper(II) atoms. The emission property studies for complexes 4 and 5 indicated strong luminescence emission.  相似文献   

11.
Bis(N‐acetyltriethylphosphaneiminium)‐tetraacetato‐dichloro‐dicuprate(II), [MeC(O)N(H)PEt3]2[Cu2(O2C–Me)4Cl2] The title compound has been prepared by the reaction of Me3SiNPEt3 with [Cu2(O2C–Me)4] and MeC(O)Cl in dichloromethane solution to give colourless crystals which include four molecules CH2Cl2 per formula unit. The complex is characterized by IR spectroscopy and by a crystal structure determination. [MeC(O)N(H)PEt3]2[Cu2(O2C–Me)4Cl2] · 4 CH2Cl2: Space group P21/n, Z = 2, lattice dimensions at –70 °C: a = 794.1(1), b = 2356.9(6), c = 1327.3(2) pm; β = 91.00(1)°; R1 = 0.0597. The structure consists of N‐acetyltriethylphosphaneiminium cations and dianions [Cu2(O2C–Me)4Cl2]2– which form an iontriple with N–H…Cl hydrogen bridges.  相似文献   

12.
Reactions of copper(I) halides (Cl, Br, I) with 1‐methyl‐1, 3‐imidazoline‐2‐thione (mimzSH) in 1 : 2 molar ratio yielded sulfur‐bridged dinuclear [Cu2X2(μ‐S‐mimzSH)21‐S‐mimzSH)2] (X = I, 1 , Br, 2 ; Cl, 3 ) complexes. Copper(I) iodide with 1,3‐imidazoline‐2‐thione (imzSH2) and Ph3P in 1 : 1 : 1 molar ratio has also formed a sulfur‐bridged dinuclear [Cu2I2(μ‐S‐imzSH2)2(PPh3)2] ( 4 ) complex. The central Cu(μ‐S)2Cu cores form parallelograms with unequal Cu–S bond distances {2.324(2), 2.454(3) Å} ( 1 ); {2.3118(6), 2.5098(6) Å} ( 2 ); {2.3075(4), 2.5218(4) Å} ( 3 ); {2.3711(8), 2.4473(8) Å} ( 4 ). The Cu···Cu separations, 2.759–2.877Å in complexes 1 – 3 are much shorter than 3.3446Å in complex 4 . The weak intermolecular interactions {H2CH···S# ( 2 ); CH···Cl# ( 3 ); NH···I# ( 4 )} between dimeric units in complexes 2 – 4 lead to the formation of linear 1D polymers.  相似文献   

13.
Transition metal complexes of Schiff base ligands have been shown to have particular application in catalysis and magnetism. The chemistry of copper complexes is of interest owing to their importance in biological and industrial processes. The reaction of copper(I) chloride with the bidentate Schiff base N,N′‐bis(trans‐2‐nitrocinnamaldehyde)ethylenediamine {Nca2en, systematic name: (1E,1′E,2E,2′E)‐N,N′‐(ethane‐1,2‐diyl)bis[3‐(2‐nitrophenyl)prop‐2‐en‐1‐imine]} in a 1:1 molar ratio in dichloromethane without exclusion of air or moisture resulted in the formation of the title complex μ‐chlorido‐μ‐hydroxido‐bis(chlorido{(1E,1′E,2E,2′E)‐N,N′‐(ethane‐1,2‐diyl)bis[3‐(2‐nitrophenyl)prop‐2‐en‐1‐imine]‐κ2N,N′}copper(II)) dichloromethane sesquisolvate, [Cu2Cl3(OH)(C20H18N4O4)2]·1.5CH2Cl2. The dinuclear complex has a folded four‐membered ring in an unsymmetrical Cu2OCl3 core in which the approximate trigonal bipyramidal coordination displays different angular distortions in the equatorial planes of the two CuII atoms; the chloride bridge is asymmetric, but the hydroxide bridge is symmetric. The chelate rings of the two Nca2en ligands have different conformations, leading to a more marked bowing of one of the ligands compared with the other. This is the first reported dinuclear complex, and the first five‐coordinate complex, of the Nca2en Schiff base ligand. Molecules of the dimer are associated in pairs by ring‐stacking interactions supported by C—H…Cl interactions with solvent molecules; a further ring‐stacking interaction exists between the two Schiff base ligands of each molecule.  相似文献   

14.
Syntheses and Crystal Structures of [Cu4(As4Ph4)2(PRR′2)4], [Cu14(AsPh)6(SCN)2(PEt2Ph)8], [Cu14(AsPh)6Cl2(PRR′2)8], [Cu12(AsPh)6(PPh3)6], [Cu10(AsPh)4Cl2(PMe3)8], [Cu12(AsSiMe3)6(PRR′2)6], and [Cu8(AsSiMe3)4(PtBu3)4] (R, R′ = Organic Groups) Through the reaction of CuSCN with AsPh(SiMe3)2 in the presence of tertiary phosphines the compounds [Cu4(As4Ph4)2(PRR′2)4] ( 1 – 3 ) ( 1 : R = R′ = nPr, 2 : R = R′ = Et; 3 : R = Me, R′ = nPr) and [Cu14(AsPh)6(SCN)2(PEt2Ph)8] ( 4 ) can be synthesised. Using CuCl instead of CuSCN results to the cluster complexes [Cu14(AsPh)6Cl2(PRR′2)8] ( 5–6 ) ( 5 : R = R′ = Et; 6 : R = Me, R′ = nPr), [Cu12(AsPh)6(PPh3)6] ( 7 ) and [Cu10(AsPh)4Cl2(PMe3)8] ( 8 ). Through reactions of CuOAc with As(SiMe3)3 in the presence of tertiary phosphines the compounds [Cu12(AsSiMe3)6(PRR′2)6] ( 9 – 11 ) ( 9 : R = R′ = Et; 10 : R = Ph, R′ = Et; 11 : R = Et, R′ = Ph) and [Cu8(AsSiMe3)4(PtBu3)4] ( 12 ) can be obtained. In each case the products were characterised by single‐crystal‐X‐ray‐structure‐analyses. As the main structure element 1 – 3 each have two As4Ph42–‐chains as ligands. In contrast 4 – 12 contain discrete AsR2–ligands.  相似文献   

15.
Three new complexes with the ligand 3,5‐diamino‐1,2,4‐triazole (Hdatrz), [Co32‐Hdatrz)6(H2O)6]·(NO3)8·4H2O ( 1 ), [Cu32‐Hdatrz)42‐Cl)2(H2O)2Cl2]·Cl2·4H2O·2C2H5OH ( 2 ) and {[Zn22‐SO4) (μ3‐datrz)2]·2H2O}n ( 3 ) have been synthesized and structurally characterized. Complex 1 has a linear trinuclear mixed‐valence cobalt structure with six neutral triazole ligands in the N(1), N(2)‐bridging mode. The central cobalt atom, Co(1), is coordinated to six nitrogen atoms (octahedral) whereas the terminal cobalt atom, Co(2), is coordinated to an N3O3 moiety (octahedral). In complex 1 , the uudd cyclic water clusters, nitrate anions and the trimeric cations are linked to a supramolecular structure. Complex 2 features a linear trinuclear copper(II) core, with four N(1), N(2)‐bridging triazole ligands and two chlorido bridges. The central copper atom is coordinated to an N4Cl2 moiety (octahedral) whereas the terminal copper is coordinated to an N2Cl2O moiety (square‐pyramidal). In complex 2 , tetrahedral hydrogen bonding interactions play an important role to form a supramolecular network. Complex 3 exhibits a polymeric structure, with N(1), N(2), N(4)‐bridging triazolate ligands and sulfate bridges, in which zinc is coordinated to an N3O moiety (tetrahedral). In complex 3 , water molecules and sulfate anions construct the sulfate‐water supramolecular chain with hydrogen bonding interactions. In addition, the complexes were investigated by elemental analyses, IR spectroscopic, and thermogravimetric measurements.  相似文献   

16.
Copper and Silver Clusters with Bridging Imido and Amido Ligands From the reactions of copper and silver chloride with tertiary phosphines and lithiated aniline the compounds [{Li(dme)3}4][Cu18(NPh)11] ( 1 ) and [Ag6(NHPh)4(PnPr3)6Cl2] ( 2 ) were obtained. The structure of the anion in 1 is closely related to the structures of the reported clusters [Cu12(NPh)8]4– [1] and [Cu24(NPh)14]4– [2]: 1 represents the third phenyl imido bridged copper cluster which contains parallel Cu3‐ and Cu6‐planes. The dimeric compound 2 consists of two Ag3 units with bridging phenyl amido ligands. Two chloride and six phosphine ligands complete the ligand sphere and shield the metal core effectively.  相似文献   

17.
A series of Zn(II) and Cu(II) complexes were synthesized using unsymmetrical N,N′‐ diarylformamidine ligands, i.e. N‐(2‐methoxyphenyl)‐N′‐2,6‐dichorophenyl)‐formamidine ( L1 ), N‐(2‐methoxyphenyl)‐N′‐phenyl)‐formamidine ( L2 ), N‐(2‐methoxyphenyl)‐N′‐(2,6‐dimethylphenyl)‐formamidine ( L3 ) and N‐(2‐methoxyphenyl)‐N′‐(2,6‐diisopropylphenyl)‐formamidine ( L4 ). The complexes, [Zn2( L1 )2(OAc)4] ( 1) , [Zn2( L2 )2(OAc)4] ( 2 ), [Zn2( L3 )2(OAc)4] ( 3 ), [Zn2( L4 )2(OAc)4] ( 4 ), [Cu2( L1 )2(OAc)4] ( 5 ), [Cu2( L2 )2(OAc)4] ( 6 ), [Cu2( L3 )2(OAc)4] ( 7 ) and [Cu2( L4 )2(OAc)4] ( 8 ), were prepared via a mechanochemical method with excellent yields between 95 ‐ 98% by reacting the metal acetates and corresponding ligands. Structural studies showed that both complexes are dimeric with a paddlewheel core structure in which the separation between the two metal centres are 2.9898 (8) and 2.6653 (7) Å in complexes 3 and 7 , respectively. Complexes 1 – 8 were used in ring‐opening polymerization of ε‐caprolactone (ε‐CL) and rac‐lactide (rac‐LA). Zn(II) complexes were more active than Cu(II) complexes, with complex 1 bearing electron withdrawing chloro groups being the most active (kapp = 0.0803 h‐1). Low molecular weight poly‐(ε‐CL) and poly‐(rac‐LA) ranging from 1720 to 6042 g mol‐1, with broad molecular weight distribution (PDIs, 1.78 – 1.87) were obtained. Complex 2 gave reaction orders of 0.56 and 1.52 with respect to ε‐CL and rac‐LA, respectively.  相似文献   

18.
Reaction of PdCl2(CH3CN)2 with the sodium salt of 5‐mercapto‐1‐methyltetrazole (MetzSNa) in methanol solution affords an interesting dinuclear palladium complex [Pd2(MetzS)4 ] ( 1 ). However, treatment of PdCl2(CH3CN)2 with neutral MetzSH ligand in methanol solution produces a mononuclear palladium complex [Pd(MetzSH)4]Cl2 ( 2 ). Both complexes were characterized by IR, 1HNMR, UV‐Vis spectroscopy as well as X‐ray crystallography. Single‐crystal X‐ray diffraction analyses of two complexes lead to the elucidation of the structures and show that 1 possesses an asymmetric structure: one Pd atom is tetracoordinated by three sulfur atoms and one nitrogen atom to form PdS3N coordination sphere, the other Pd atom is tetracoordinated by three nitrogen atoms and one sulfur atom to form PdSN3 coordination sphere. The molecules of 1 are associated to 1‐D infinite linear chain by weak intermolecular Pd···S contacts in the crystal lattice. In 2 , the Pd atom lies on an inversion center and has a square‐planar coordination involving the S atoms from four MetzSH ligands. The two chloride ions are not involved in coordination, but are engaged in hydrogen bonding.  相似文献   

19.
The complexes [Cu2Br4]2?, [Cu2I4]2?, [Cu2I2Br2]2?, [Cu2I3Cl]2?, [Ag2Cl4]2? have been characterized as their isomorphous bis(triphenylphosphoranylidene)ammonium ([Ph3PNPPh3]+ = PNP+) salts by single crystal structural determinations. All anions show the centrosymmetric doubly halogen‐bridged forms [XM(μ‐X)2MX]2? with three‐coordinate metal atoms that have been observed in [M2X4]2? complexes with other large organic cations. In [Cu2I2Br2]2? the iodide ligands occupy the bridging positions and the bromide the terminal positions, while in [Cu2I3Cl]2?, obtained in an attempt to prepare [Cu2I2Cl2]2?, two of the iodide ligands occupy the bridging positions with the third iodide and the chloride ligand occupying two statistically disordered terminal positions. In [Ag2Cl4]2? the distortion from ideal trigonal coordination of the metal atom is greater than in the copper complexes, but less than in other previously reported [Ag2Cl4]2? complexes with organic cations. The ν(MX) bands have been assigned in the far‐IR spectra, and confirm previous observations regarding the unexpectedly simple IR spectra of [Cu2X4]2? complexes.  相似文献   

20.
The title compound, [Cu8(C15H10N3O3S)4Cl4(C3H7NO)2]·2C3H7NO, consisting of eight CuII cations, four trianionic 1‐(2‐oxidobenzoyl)‐2‐(2‐oxo‐2‐phenylethanethioyl)hydrazine‐1,2‐diide ligands, four chloride ligands and two coordinated and two solvent dimethylformamide molecules, crystallizes with the octanuclear molecule located on an inversion centre. The two halves of the molecule are connected by two bridging Cl atoms. This is the first example of an octanuclear complex based on a thiosemicarbazone‐derived ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号