首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Novel benzimidazol‐2‐ylidene carbene complexes of Ag(I) were prepared by interaction of the corresponding benzimidazolium salt with Ag2O in dichloromethane. Their structures were characterized by elemental analyses, 1H‐NMR, 13C‐NMR and IR spectroscopy techniques. All compounds studied in this work were screened for their in vitro antimicrobial activities against the standard strains: Enterococcus faecalis (ATCC 29212), Staphylococcus aureus (ATCC 29213), Escherichia coli (ATCC 25922), Pseudomonas aeruginosa (ATCC 27853) and the fungi Candida albicans and Candida tropicalis. The new complexes were found to be effective antimicrobial activity against a series of bacteria and fungi. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Platinum (II) complexes bearing N‐heterocyclic carbene (NHC) ligands have been widely used in catalytic chemistry, but there are very few reports of biological properties of this type of complexes. A series of [PtCl2(NHC)(PEt3)] complexes were synthesized. The structures of all compounds were characterized by 1H‐NMR, 13C‐NMR, IR and elemental analysis techniques, which supported the proposed structures. The single crystal structures of complexes 1a and 1e were determined. The title complexes show slightly distorted square‐planar coordination around the platinum (II) metal center. The cytotoxic properties of the platinum (II)–NHC complexes have been assessed in various human cancer lines, including cisplatin‐sensitive and resistant cells. IC50 values of these four complexes were determined by the MTS‐based assay on three human cell lines—brain (SHSY5Y), colon (HTC116) and liver (HEP3B). These complexes have been highlighted cancer therapeutic agent with unique structures and functions.  相似文献   

3.
A series of N‐heterocyclic carboxylate‐stabilized N‐heterocyclic carbene palladium complexes have been synthesized and fully characterized. The solid‐state structures indicate that each of the palladium centers is coordinated by an N‐heterocyclic carbene, a chloride and a bidentate N,O‐donor N‐heterocyclic carboxylate ligand. The catalytic performance of the complexes was screened and the results revealed that the complexes exhibit moderate to high catalytic activities for the direct C─H bond arylation of benzoxazoles with aryl bromides.  相似文献   

4.
A series of unsymmetrically substituted N‐heterocyclic carbene (NHC) precursors ( 1a , 1b , 1c , 1d , 1e ) were synthesized from the reaction of N‐phenylbenzimidazole with various alkyl halides. These compounds were used to synthesize NHC–silver(I) complexes ( 2a , 2b , 2c , 2d , 2e ). The five new 1‐phenyl‐3‐alkylbenzimidazolium salts ( 1a , 1b , 1c , 1d , 1e ) and their NHC–silver complexes ( 2a , 2b , 2c , 2d , 2e ) were characterized by the 1H NMR, 13C NMR and FT‐IR spectroscopic methods and elemental analysis techniques. Also, the two NHC–silver complexes 2b and 2c were characterized by single‐crystal X‐ray crystallography, which confirmed the linear C―Ag―Cl arrangements. The antibacterial activities of the NHC precursor and NHC–silver complexes were tested against three Gram‐positive bacterial strains (Bacillus subtilis, Listeria monocytogenes and Staphylococcus aureus) and three Gram‐negative bacterial strains (Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa) using the microdilution broth method. The NHC–silver complexes showed higher antibacterial activity than the NHC precursors. In addition, silver complexes 2a , 2b , 2c , 2d showed high antibacterial activity against the Gram‐positive bacteria L. monocytogenes and S. aureus compared to the standard, tetracycline. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
We report the profiling of the metabolic stability, normal cell inhibition, and genotoxicity of the two gold complexes [Au (iPr2‐bimy)2]PF6 ( 1 ) and [Au (Fpyr)(iPr2‐bimy)]PF6 ( 2 ), which show strong apoptotic activities in lung cancer cells. Liver microsomal tests revealed that the compounds have a relatively high half‐life compared to midazolam and do not suffer rapid metabolism and in vitro clearance. The cytotoxic potential of these compounds were also relatively weak in normal cells, with higher IC50 values compared to cancer cells, with a 2–60 times difference. The Ames test revealed that the compounds do not give rise to any mutations as well. Overall, the compounds showed stability in liver microsomes, specificity for cancer cells, and a lack of genotoxic potential.  相似文献   

6.
Four new Ag(I)–N‐heterocyclic carbene (NHC) complexes ( 5 – 8 ) bearing symmetrically substituted NHC ligands have been synthesized starting from the corresponding benzimidazolium bromide salts which are accessible in a single step from N ‐substituted benzimidazoles (N ‐alkyl and N ‐aryl) and subsequently reacted with the basic metal source Ag2O in acetonitrile–methanol. These compounds were characterized using elemental analyses, 1H NMR, 13C NMR, Fourier transform infrared and UV–visible spectroscopic techniques, and molar conductivity. Single‐crystal structural studies for complex 5 show that the Ag(I) centre has a perfectly linear C–Ag–C coordination, with quasi‐parallel pairs of aromatic benzimidazole planes. All the complexes interact with Aedes albopictus DNA via intercalation mode by a large hypochromicity of 22 and 27% and smaller hypochromicity of 16 and 19%. Furthermore, all complexes exhibit efficient DNA cleavage activity via a non‐oxidative mechanistic pathway. The DNase activities of the test compounds revealed a time‐ and concentration‐dependent activity pattern. The Ag(I)–NHC complexes showed considerably higher DNA cleavage activity compared to their respective benzimidazolium salts at a lower concentration. The DNA cleavage of these complexes changed from a moderate effect to a good one, corresponding to the increasing lipophilicity order of the complexes as 5  <  6  <  7  <  8 (1.02, 1.05, 1.78 and 2.06 for 5 – 8 , respectively). This order is further corroborated with the DNA binding study, but with the exception of complex 5 , which shows a better binding ability for DNA (K b = 3.367 × 106) than complexes 6 – 8 (6.982 × 105, 8.376 × 105 and 1.223 × 106, respectively).  相似文献   

7.
A series of new sterically modulated chlorocoumarin‐substituted (benz)imidazolium salts and their bis‐N‐heterocyclic carbene silver(I) complexes were prepared and characterized. The complexes were prepared in good yields following the in situ deprotonation method by treating azolium salts with silver(I) oxide in the dark. All the compounds were characterized using various spectroscopic and analytical methods. Additionally, one of the benzimidazolium salts was characterized using single‐crystal X‐ray diffraction technique. In this salt, intermolecular π–π stacking interactions operate between benzimidazole as well as coumarin heterocyclic systems with adjacent molecules. In the preliminary antibacterial studies, the silver complexes were found more active than the corresponding salts against a panel of bacterial strains. Interestingly, the complexes displayed improved antibacterial efficacy against Escherichia coli strain, comparable with that of the standard drug ampicillin.  相似文献   

8.
A series of new benzimidazolium salts as N‐heterocyclic carbene (NHC) precursors has been synthesized. Reactions of these salts with Ag2O with varying metal‐to‐salt ratio facilitate the formation of a series of new binuclear and mononuclear Ag(I)–NHC complexes. All compounds were characterized using physicochemical and spectroscopic techniques. Single‐crystal X‐ray diffraction study reveals a binuclear structure for one of the complexes and a mononuclear one for two others. These complexes exist as cationic Ag(I)–NHC complexes with the chelation of carbene carbons to the silver centre in an almost linear manner. The compounds were screened for their anti‐bacterial activities against Staphylococcus aureus (ATCC 12600) as a Gram‐positive bacterium and Escherichia coli (ATCC 25922) as a Gram‐negative bacterium. The results show that both bacteria appear markedly inhibited. Furthermore, the results suggest the possibility of steric variation as a modulation of the anti‐bacterial activities. The nuclease activities of the compounds were assessed using gel electrophoresis and the results indicate that these complexes can cleave or degrade DNA and RNA via a non‐oxidative mechanism. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
The first water‐soluble bis(NHCSO3)CuCl complexes (NHCSO3 = NaImBn,PrSO3, Na2(4‐Me)ImPrSO3 and Na2BzImPrSO3) derived from the sulfonated N‐heterocyclic carbene precursors HImBn,PrSO3 (3‐(1‐benzyl‐1H‐imidazol‐3‐ium‐3‐yl)propane‐1‐sulfonate), Na(4‐Me)HImPrSO3 (sodium 3,3′‐(4‐methyl‐1H‐imidazole‐3‐ium‐1,3‐diyl)dipropane‐1‐sulfonate) and NaHBzImPrSO3 (sodium 3,3′‐(1H‐benzoimidazole‐3‐ium‐1,3‐diyl)dipropane‐1‐sulfonate) have been synthesized. These compounds have been characterized using infrared and NMR spectroscopy and electrospray ionization mass spectrometry. The in vitro anti‐tumour effects of the bis(NHCSO3)CuCl complexes and the corresponding free ligands were evaluated for a panel of various human tumour cell lines, including examples of lung, colon, ovarian and cervical carcinoma as well as of melanoma. Their cytotoxic properties were also evaluated against non‐transformed human cells and on a cellular model of cisplatin resistance. NHC–copper complexes induced cell killing effects preferentially against tumour cells, with IC50 values in the micromolar range. Additionally, they were found able to overcome acquired cisplatin resistance.  相似文献   

10.
Abstract

In this study, two novel benzimidazole-based N-heterocyclic carbene ligands (1a-b) and their silver(I) complexes (2a-b) were synthesized. All new compounds were characterized by FT-IR, LC-MS, 1H NMR, and 13C NMR spectroscopies. The in vitro antitumor activities of NHC ligands (1a-b) and their silver(I) complexes (2a-b) against DU-145 human prostate cancer cells, MDA-MB-231 and MCF-7 human breast cancer cells and L-929 (normal cells adipose from mouse) were also determined using MTT analysis for 24?h, 48?h, and 72?h. The results showed that while NHC ligands did not have in vitro antitumor activity on MCF-7, MDA-MB-231 and DU-145 cells, Ag(I)-NHC complexes have in vitro antitumor activities. The in vitro antitumor activity of 2a was found to be lower than that of 2b. Ag(I)-NHC complexes were observed to have higher IC50 values for non-cancerous cell lines than cancer cells.  相似文献   

11.
Two gold(I) complexes of the (NHC)AuX type bearing a triazole‐based N‐heterocyclic carbene (NHC) ligand (1‐tert‐butyl‐4‐(4‐methylphenyl)‐3‐phenyl‐1H‐1,2,4‐triazol‐4‐ium‐5‐ylidene) and various halide ligands (X = Br, I) were synthesized and characterized in solution using NMR spectroscopy as well as in the solid state using X‐ray diffraction techniques. The cytotoxic properties of both compounds and the precursor, (NHC)AuCl, were screened against a panel of human tumour cell lines including liver cancer (HepG2), cervical cancer (HeLa S3) and leukaemia (CCRF‐CEM, HL‐60) and compared to cisplatin and auranofin. It was found that the activities of the chloro and bromo derivatives were generally superior to that of cisplatin and slightly less effective compared to auranofin, except for HepG2 cells where auranofin was not as effective. In addition, the ability to induce membrane phosphatidyl serine externalization as a hallmark of apoptosis in CCRF‐CEM leukaemic cells was investigated. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
A series of Ag(I) complexes ( 6 , 7 , 8 , 9 ) derived from imidazol‐2‐ylidenes was synthesized by reacting Ag2O with an o‐, m‐, p‐xylyl or 1,3,5‐triazine‐linked imidazolium salts ( 1 , 2 , 3 , 4 ) and then characterizing these using various spectro‐analytical techniques. Additionally, triazine‐linked bis‐imidazolium salt 5 was characterized using the single‐crystal X‐ray diffraction method. Complexes 6–9 were formed from the N‐heterocyclic carbene ligand precursors 1–3 as PF6 salts in good yields. Conversely, salt 5 does not form Ag(I) complex even under various reaction conditions. Using ampicillin as a standard, complexes 6–9 were tested against bacteria strains Escherichia coli and Staphylococcus aureus as Gram‐negative and Gram‐positive bacteria, respectively, showing potent antimicrobial activities against the tested bacteria even at minimum inhibition concentration and bacterial concentration levels. Furthermore, the potential anticancer activities of the reported complexes were evaluated against the human colorectal cancer (HCT 116) cell lines, using 5‐fluorouracil as a standard drug. The highest anticancer activities were observed for complex 8 with an IC50 value of 3.4 μm , whereas the lowest was observed for complex 9 with an IC50 value of 18.1 μm . Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
Various nitrile‐functionalized benzimidazol‐2‐ylidene carbene complexes of Hg(II) and Ag(I) were synthesized by the interaction of 1‐benzyl/1‐butyl‐3‐(cyano‐benzyl)‐3 H‐benzimidazol‐1‐ium mono/dihexafluorophosphate with Hg(OAc)2/Ag2O in acetonitrile. Two of the benzimidazolium salts were structurally characterized by single crystal X‐ray diffraction technique. Structures of reported compounds were characterized by 1 H, 13C NMR, FT‐IR, UV–visible spectroscopic techniques, and molar conductivity and elemental analyses. For bis‐benzimidazolium salt, dinuclear Hg(II)– and Ag(I)–carbene complexes were obtained. Nuclease activity and binding interactions of the synthesized benzimidazolium salts and their Ag(I)–carbene complexes with DNA were studied using agarose gel electrophoresis and, absorption spectroscopy and viscosity measurements, respectively. Ag(I)–carbene complexes showed higher DNA binding activity compared to their respective benzimidazolium salts. However, a benzimidazolium salt and two of the Ag(I) complexes showed remarkably higher nuclease activity both, in the presence and absence of an oxidizing agent. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
Neutral and cationic cyclopentadienone (CpO) N‐heterocyclic carbene (NHC) bis‐carbonyl iron(0) complexes bearing, appended to the NHC ligand, either a terminal amino group on the lateral chain, [Fe(η4‐CpO)(CO)2C‐NHC(CH2)nNH2)] with n = 2 ( 2a ) and 3 ( 2b ), or a cationic NMe3+ fragment, [Fe(η4‐CpO)(CO)2C‐NHC(CH2)2NMe3)](I) ( 3 ), were prepared and characterized in terms of their structure, stability and reactivity. The photochemical properties of 2a and 2b were examined both in organic solvents and in water, revealing the photoactivated release of one CO ligand followed by the formation of the chelated complex [Fe(η4‐CpO)(CO)(κ2C,N‐NHC(CH2)2NH2)] ( 4 ), whose molecular structure was confirmed by single crystal X‐ray diffraction studies. This metallacyclization occurs only in the case of 2a , with the ethylene spacer between NHC ring and NH2 group in the lateral chain, allowing the formation of a stable 6‐membered ring. On the other hand, 2b undergoes decomposition upon irradiation. The reactivity in aqueous solutions revealed the chemical speciation of the complexes at different pH and especially under physiological conditions (phosphate buffer solution at pH 7.4 and 37 °C). The lack of data on the biological properties of iron(0) complexes prompted us to preliminarily investigate their cytotoxicity against model cancer cells (AsPC‐1 and HPAF‐II), along with a determination of their lipophilicity.  相似文献   

15.
Six new [RhBr(NHC)(cod)] (NHC = N‐heterocyclic carbene; cod = 1,5‐cyclooctadiene) type rhodium complexes ( 4–6 ) have been prepared by the reaction of [Rh(μ‐OMe)(cod)]2 with a series of corresponding imidazoli(in)ium bromides ( 1–3 ) bearing mesityl (Mes) or 2,4,6‐trimethylbenzyl (CH2Mes) substituents at N1 and N3 positions. They have been fully characterized by 1 H, 13 C and heteronuclear multiple quantum correlation NMR analyses, elemental analysis and mass spectroscopy. Complexes of type [(NHC)RhBr(CO)2] (NHC = imidazol‐2‐ylidene) ( 7b–9b ) were also synthesized to compare σ‐donor/π‐acceptor strength of NHC ligands. Transfer hydrogenation (TH) reaction of acetophenone has been comparatively studied by using complexes 4–6 as catalysts. The symmetrically CH2Mes‐substituted rhodium complex bearing a saturated NHC ligand ( 5a ) showed the highest catalytic activity for TH reaction. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
A series of bidentate pyridine‐functionalized palladium N‐heterocyclic carbene (Pd NHC) complexes with various wingtip substituents (R = methyl, phenyl and tert‐butyl) have been synthesized and evaluated for their potential biomedical applications as antimicrobials and antiproliferative drug candidates. The obtained Pd NHC complexes were applied in a standard broth microdilution assay for determination of their antimicrobial activities against thirteen strains of pathogenic microorganisms. In addition to that, cytotoxic activities of the Pd NHC complexes were also evaluated against three human cancer cell lines, namely breast (MCF‐7), colon (HCT116) and oral (H103) cancer cells, using a standard MTT assay. Upon coordination to palladium, the Pd NHC complexes show significant antimicrobial activities with minimum inhibitory concentrations in the micromolar range, and they are cytotoxic to the tested carcinomas with IC50 ranging from 13 to 38 μM. Evidences for influence of both wingtip substituents and optical isomerism on the biological activities of the complexes have been found.  相似文献   

17.
Two Pd(II)–NHC complexes bearing benzimidazole and pyridine groups have been successfully prepared and fully characterized by NMR and X‐ray diffraction analysis. The structure of palladium complexes are a typical square‐planar with palladium surrounded by two pairs of trans‐arranged benzimidazole and carbene ligands. The Pd–NHC complexes have been proved to be a highly efficient catalyst for the Mizoroki–Heck coupling reaction of aryl halides with various substituted acrylates under mild conditions in excellent yields. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
Eight novel palladium N‐heterocyclic carbene (Pd‐NHC) complexes were synthesized by the reaction of chloro 1,3‐dialkylbenzimidazolin‐2‐ylidene silver(I) complexes with bis(benzonitrile)palladium(II) chloride in dichloromethane. These eight Pd‐NHC complexes are as follows: bis[1‐phenyl‐3‐(2,4,6‐trimethylbenzyl)benzimidazol‐2‐ylidene]dichloropalladium(II), bis[1‐phenyl‐3‐(2,3,5,6‐tetramethylbenzyl)benzimidazol‐2‐ylidene]dichloropalladium(II), bis[1‐phenyl‐3‐(2,3,4,5,6‐pentamethylbenzyl)benzimidazol‐2‐ylidene]dichloropalladium(II), bis[1‐phenyl‐3‐(3,4,5‐trimethoxybenzyl)benzimidazol‐2‐ylidene]dichloropalladium(II), bis[1‐(2‐diethylaminoethyl)‐3‐(3‐methylbenzyl)benzimidazol‐2‐ylidene]dichloropalladium(II), bis[1‐(2‐diethylaminoethyl)‐3‐(2,3,5,6‐tetramethylbenzyl)benzimidazol‐2‐ylidene]dichloropalladium(II), bis[1‐(2‐morpholinoethyl)‐3‐naphthalenomethylbenzimidazol‐2‐ylidene]dichloropalladium(II) and bis[1‐(2‐morpholinoethyl)‐3‐(2‐methylbenzyl)benzimidazol‐2‐ylidene]dichloropalladium(II). Also, these synthesized complexes were fully characterized using Fourier transform infrared, 1H NMR and 13C NMR spectroscopic methods and elemental analysis techniques. These synthesized novel Pd‐NHC complexes were tested as catalysts in the direct arylation of 2‐n‐butylthiophene, 2‐n‐butylfuran and 2‐isopropylthiazole with various aryl bromides at 130°C for 1 h. The complexes showed very good catalytic activities in these reactions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
Salts of meta‐xylyl‐linked N‐ethyl/n‐butyl/benzyl‐substituted bis‐benzimidazolium having hexafluorophosphate counterions have been synthesized. The corresponding binuclear Ag(I)‐N‐heterocyclic carbene complexes were prepared by the reaction of Ag2O. The N‐heterocyclic carbene (NHC) ligand precursor 7 and Ag(I)–NHC complexes 10 and 11 have been structurally characterized by single‐crystal X‐ray diffraction technique. All of the reported compounds have been tested for their anticancer activity using human colorectal (HCT 116) cancer cell lines. Sterically varied benzimidazolium salts displayed significant activity against HCT 116 cell line, yielding IC50 values in the range 0.1–19.4 µ m , while Ag(I)–carbene complexes showed exceptionally good activity (0.2–1.3 µ m ) against tested cancer cell lines. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
A series of Au(I) complexes ( 12 , 13 , 14 , 15 , 16 ) and Ag(I) complexes ( 17 , 18 , 19 , 20 ) derived from imidazo[1,5‐a]pyridin‐3‐ylidenes were synthesized from AuCl(SMe2) or by reacting silver(I) acetate with 2,5‐dimethylimidazo[1,5‐a]pyridin‐2‐ium iodide or imidazo[1,5‐a]pyridin‐2‐ium salts, and were characterized using NMR spectroscopy, mass spectrometry and elemental analyses. In addition, the Au(I) complex 13 and the Ag(I) complex 19 were characterized using single‐crystal X‐ray diffraction. Using paclitaxel as a standard, all Au(I) and Ag(I) N‐heterocyclic carbene complexes were evaluated for their in vitro anti‐tumour activity against 12 cell lines using a monolayer cell survival and proliferation assay. The highest anticancer activity was found for complexes 15 , 13 and 14 with mean IC50 values of 10.09, 10.42 and 12.28 μM, respectively. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号