首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A novel and task‐specific nano‐magnetic Schiff base ligand with phosphate spacer using 2‐aminoethyl dihydrogen phosphate instead of usual coating agents, i.e. tetraethoxysilane and 3‐aminopropyltriethoxysilane, for coating of nano‐magnetic Fe3O4 is introduced. The nano‐magnetic Schiff base ligand with phosphate spacer as a novel catalyst was synthesized and fully characterized using infrared spectroscopy, X‐ray diffraction, scanning and transmission electron microscopies, thermogravimetry, derivative thermogravimetry, vibrating sample magnetometry, atomic force microscopy, X‐ray photoelectron spectroscopy and energy‐dispersive X‐ray spectroscopy. The resulting task‐specific nano‐magnetic Schiff base ligand with phosphate spacer was successfully employed as a magnetite Pd nanoparticle‐supported catalyst for Sonogashira and Mizoroki–Heck C–C coupling reactions. To the best of our knowledge, this is the first report of the synthesis and applications of magnetic nanoparticles of Fe3O4@O2PO2(CH2)2NH2 as a suitable spacer for the preparation of a designable Schiff base ligand and its corresponding Pd complex. So the present work can open up a new and promising insight in the course of rational design, synthesis and applications of various task‐specific magnetic nanoparticle complexes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Considering the application potentials of organic materials possessing both conducting and ferromagnetic functions in various electronic devices, an attempt was made to prepare conducting polyaniline (PANI) layered magnetic nano composite polymer particles. Two routes were used to modify magnetic Fe3O4 core particles. In one route, seeded emulsion polymerization of methyl methacrylate (MMA) was carried out in presence of nano‐sized Fe3O4 core particles. In another route, cross‐linker ethyleneglycol dimethacrylate (EGDM) was used in addition to MMA. The modified composite particles were named as Fe3O4/PMMA and Fe3O4/P(MMA‐EGDM), respectively. Finally, seeded chemical oxidative polymerization of aniline was carried out in the presence of Fe3O4/PMMA and Fe3O4/P(MMA‐EGDM) composite seed particles to obtain Fe3O4/PMMA/PANI and Fe3O4/P(MMA‐EGDM)/PANI composite polymer particles. The modification of Fe3O4 core particles was confirmed by electron micrographs, FTIR, UV–visible spectra, X‐ray photoelectron spectra, X‐ray diffraction pattern and thermogravimetric analyses. A comparative study showed that crosslinking of intermediate shell improved the magnetic susceptibility and electrical conductivity of PANI layered magnetic nano composite particles. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
We have synthesized furan-based vanadium complexes, bis(5-nitrofuran-2-carboxylato)oxovanadium(IV) – [VO(5NF)2], bis(1-furan-2-yl-ethanonato)oxovanadium(IV) sulfate – [VO(2AF)2]SO4, and bis(5-methyl-2-furalato)oxovanadium(IV) sulfate – [VO(MFFA)2]SO4 possessing [VO(O4)] coordination mode. These complexes are characterized by physico-chemical and spectroscopic methods. Based on electron paramagnetic resonance parameters, the proposed geometry is close to a distorted square pyramid. Animal study was carried out using standard protocol and the complete profile of glucose, protein, and total cholesterol levels were analyzed followed by an oral glucose tolerance test.  相似文献   

4.
The Fe3O4 magnetic nanoparticles (Fe3O4 MNPs) were modified with 1,10‐phenanthroline‐5,6‐diol and the relevant Co complex (Fe3O4@Phendiol@Co) synthesized as a nano‐magnetic heterogeneous catalyst to be used for the N ‐formylation of various amines at room temperature under solvent‐free conditions. Also, in order to find the better concept of the catalyst role, the N ‐formylation reaction was carried out by the use of ultrasound irradiation in the absence of the Co nano‐catalyst and the results were compared. The catalyst characterized by different methods such as the elemental analysis (CHN), ICP, FT‐IR, XRD, EDX, SEM, TEM, TG‐DTA, VSM and XPS. In addition, the antioxidant and the antibacterial activities of the Fe3O4@Phendiol@Co nano‐catalyst and its Phendiol ligand were in vitro screened by 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH) free radical scavenging and disc diffusion methods. Results showed that they possess strong antioxidant activity (IC50; 0.182 ± 0.006 mg/ml) and good antibacterial potential in comparison to standards.  相似文献   

5.
An advanced novel magnetic ionic liquid based on imidazolium tagged with ferrocene, a supported ionic liquid, is introduced as a recyclable heterogeneous catalyst. Catalytic activity of the novel nanocatalyst was investigated in one‐pot three‐component reactions of various aldehydes, malononitrile and 2‐naphthol for the facile synthesis of 2‐amino‐3‐cyano‐4H‐pyran derivatives under solvent‐free conditions without additional co‐catalyst or additive in air. For this purpose, we firstly synthesized and investigated 1‐(4‐ferrocenylbutyl)‐3‐methylimidazolium acetate, [FcBuMeIm][OAc], as a novel basic ferrocene‐tagged ionic liquid. This ferrocene‐tagged ionic liquid was then linked to silica‐coated nano‐Fe3O4 to afford a novel heterogeneous magnetic nanocatalyst, namely [Fe3O4@SiO2@Im‐Fc][OAc]. The synthesized novel catalyst was characterized using 1H NMR, 13C NMR, Fourier transform infrared and energy‐dispersive X‐ray spectroscopies, X‐ray diffraction, and transmission and field emission scanning electron microscopies. Combination of some unique characteristics of ferrocene and the supported ionic liquid developed the catalytic activity in a simple, efficient, green and eco‐friendly protocol. The catalyst could be reused several times without loss of activity.  相似文献   

6.
Magnetic carbon nanotube‐supported imidazolium ionic liquid (CNT‐Fe3O4‐IL) was synthesized and investigated using various characterization techniques, including Fourier transform infrared and Raman spectroscopies, X‐ray diffraction, vibrating sample magnetometry, scanning and transmission electron microscopies, and thermogravimetric and differential thermal analyses. In order to synthesize the CNT‐Fe3O4‐IL nanocomposites, Fe3O4‐decorated multi‐walled CNTs were modified with 1‐methyl‐3‐(3‐trimethoxysilylpropyl)‐1H‐imidazol‐3‐ium chloride. This catalytic system was found to be a highly stable, active, reusable and solid‐phase catalyst for the synthesis of 2‐aminothiazoles via the one‐pot reaction of ketone, thiourea and N‐bromosuccinimide under mild conditions. Immobilized magnetic ionic liquid catalysis combines the advantages of ionic liquid media with magnetic solid support nanomaterials which enables the application of nanotechnology and green chemistry in chemical processes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
In this work, the photocatalytic activity of the synthesized graphene oxide (GO)‐Fe3O4/TiO2 mesoporous photocatalysts was evaluated using chlorpyrifos (CP) as a contaminant. The nano‐photocatalyst was characterized by X‐ray diffraction, field emission scanning electron microscopy with energy‐dispersive X‐ray spectroscopy, transmission electron microscopy, and specific surface area by the Brunauer–Emmett–Teller method. Using visible light, the GO‐Fe3O4/TiO2 mesoporous photocatalyst was investigated on the degradation of CP pesticide. The GO‐Fe3O4/TiO2 photocatalyst displayed a good photocatalytic activity, which was achieving 97% of CP degradation after 60 min. Finally, experiments were performed to evaluate GO‐Fe3O4/TiO2 mesoporous nanocatalyst activity on repeated applications; after several uses, its photocatalytic activity was retained, which indicated stability.  相似文献   

8.
A simple, green and efficient protocol for the one‐pot four‐component synthesis of pyrano[2,3‐c ]pyrazole derivatives produced from reaction between aryl aldehydes, ethyl acetoacetate, malononitrile and hydrazine hydrate in the presence of nano magnetic piperidinium benzene‐1,3‐disulfonate was synthesized in water at 60 °C. The Fe3O4@SiO2 nanoparticle‐supported IL was designed and synthesized. The present process offers advantages such as clean reaction, short reaction time, good to excellent yield, easy purification and easy recoverable catalyst.  相似文献   

9.
Fe3O4 nanoparticles were coated with aminopropyltriethoxysilane and subsequently reacted with isatin to obtain imine‐bonded Fe3O4 nanoparticles. The addition of ZrOCl2?8H2O or CuCl2 led to the formation of complexes of Zr(IV)/isatin@Fe3O4 or Cu (II)/isatin@Fe3O4 as new magnetically separable catalysts. The synthesized catalysts were characterized using various techniques. These catalysts are shown to be efficient for chemo‐selective oxidation of sulfides to sulfoxides using hydrogen peroxide as oxidative agent. This system has many advantages, such as excellent level of reusability of magnetic catalysts, high yields, simplicity of separation of catalysts using an external magnet, environmental benignity and ease of handling. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
Two binary and two ternary mono‐oxovanadium (IV) complexes of acetylacetonate, curcumin and N ,N ′‐bis(2‐pyridyl)thiourea were synthesized. They were characterized using elemental analysis, infrared and UV–visible spectroscopies and magnetic and conductivity measurements. The formation constants K f were determined from spectrophotometric measurements. The catalytic potential of the VO complexes was investigated for the oxidation of 1‐octene by aqueous H2O2 in acetonitrile. They display high catalytic potential for the conversion of 1‐octene with low chemoselectivity to the epoxy product. The VO complexes exhibit good antibacterial and antimicrobial activities. The antioxidant activity of the VO complexes and their ligands was investigated. The VO complexes show high DNA affinity and DNA cleavage ability.  相似文献   

11.
The formation constants of some oxovanadium(IV) binary complexes containing Schiff bases resulting from condensation of salicylaldehyde with aniline and with its derivatives were determined spectophotometrically. The synthesized compounds were characterized by analytical and different physico-chemical techniques like 1H NMR, IR, elemental analysis, mass and UV-Vis spectral studies. The IR spectra affirm that coordination takes place through azomethine nitrogen and phenolate oxygen. Three of the VO(IV) Schiff base complexes i.e. bis(salicylideneaniline)oxovanadium(IV), [VO(L1)2], bis(salicylidene-4-methoxyaniline) oxovanadium (IV), [VO(L2)2] and bis(salicylidene-4-cyanoaniline)oxovanadium(IV), [VO(L10)2], were studied by thermogravimetry in order to evaluate their thermal stability and thermal decomposition pathways. The number of steps and, in particular, the starting temperature of decomposition of these complexes depends on the equatorial ligand. The complexes screened for antioxidant activity and the ab initio calculations were carried out to determine the structural and the geometrical properties of a typical vanadyl salicylideneaniline complex, [VO(L1)2].  相似文献   

12.
Novel Pd nanoparticles were prepared in five successive stages: 1) preparation of the Fe3O4 magnetic nanoparticles (Fe3O4 MNPs), 2) coating of Fe3O4 MNPs with SiO2 (Fe3O4@SiO2), 3) functionalization of Fe3O4@SiO2 with 3‐chloropropyltrimethoxy‐ silane (CPTMS) ligand (Fe3O4@SiO2@CPTMS), 4) further functionalization with 3,5‐diamino‐1,2,4‐triazole (DAT) ligand (Fe3O4@SiO2@CPTMS @DAT), and 5) the complexation of Fe3O4@SiO2@CPTMS@DAT with PdCl2 (Fe3O4@SiO2@CPTMS@ DAT@Pd). Then, the obtained Pd nano‐catalyst characterized by different methods such as the elemental analysis (CHN), FT‐IR, XRD, EDX, SEM, TEM, TG‐DTA and VSM. Finally, the Pd catalyst was applied for the synthesis of various 2‐imino‐3‐phenyl‐2,3‐dihydrobenzo[d]oxazol‐5‐ols.  相似文献   

13.
Two new Fe3O4 microspheres‐supported semi‐homogeneous catalysts, namely Fe3O4‐G4‐polyaminoamido (PAMAM) dendrimers‐Pd(0) and Fe3O4‐polyethylene glycols (PEGs)‐Pd(0) were synthesized and characterized by X‐ray powder diffraction, infrared spectrum, scanning electron microscopy, transmission electron microscopy, X‐ray photoelectron spectroscopy and thermal gravimetric analysis, which can catalyze Suzuki coupling reactions. The performance of catalysts was tested for the reactions of aryl halides with phenyl boronic acid and compared with a heterogeneous catalyst Fe3O4‐(3‐aminopropyl)triethoxysilane (APTS)‐Pd(0), in which Fe3O4‐G4‐PAMAM dendrimers‐Pd(0) shows the best activity among the three catalysts. The order of the catalytic activities is Fe3O4‐G4‐PAMAM dendrimers‐Pd(0)>Fe3O4‐PEGs‐Pd(0)>Fe3O4‐APTS‐Pd(0). The catalysts can be quickly and completely recovered by simply applying a magnet of 105 mT and the efficiencies remain unaltered even after four recycles.  相似文献   

14.
Polyethersulfone (PES) and poly(1‐vinylpyrrolidone) (PVP) were used to prepare ultrafiltration membranes with grafted Fe3O4 magnetic nanoparticles (PVP‐g‐Fe3O4@SiO2). The structure of synthesized PVP‐g‐Fe3O4@SiO2 was confirmed by FT‐IR and SEM analysis. Physical properties of blend membranes such as thermal resistance, Tensile strength, water uptake, and hydrophilicity were also investigated. Blended membranes of PES/PVP‐g‐Fe3O4@SiO2 have exhibited higher thermal resistance due to increasing the modified nanoparticle content. The hydrophilicity of the synthesized PES/PVP‐g‐Fe3O4@SiO2 membranes also improved by increasing the PVP‐g‐Fe3O4@SiO2 content. As expected, increasing the hydrophilicity of blended membrane, caused enhancement of fouling resistance in membranes. Results showed that the content of PVP‐g‐Fe3O4@SiO2 has different effects on the properties of synthesized composite membranes. Despite increasing the content of PVP‐g‐Fe3O4@SiO2 has a negative effect on elongation, positive effects on maximum stress was observed. Moreover, the water uptake of synthesized membranes was significantly enhanced in comparison to other similar studies.  相似文献   

15.
A series of new complexes of oxovanadium(IV) [VO(L)(B)] and ruthenium(II) [Ru(CO)(PPh3)2(L)] ( 1.1- 1.3,  2.1–2.3 ) (H2L = dehydroacetic acid Schiff base of S‐methyldithiocarbazate, H2smdha ( 1 ) or S‐benzyldithiocarbazate, H2sbdha ( 2 ); B = 2,2′‐bipyridine (bpy) or 1,10‐phenanthroline (phen)) have been synthesized. The structure of these complexes was authenticated using elemental analyses and spectroscopic techniques, and their magnetic properties and electrochemical behaviour were studied. The molecular structures of oxovanadium(IV) complexes [VO(smdha)(bpy)]?CH2Cl2 ( 1.1 ) and [VO(sbdha)(phen)]?2H2O ( 2.2 ) were confirmed using single‐crystal X‐ray crystallography. Analytical data showed that the ligands 1 and 2 are chelated to the metal centres in a bi‐negative tridentate fashion through azomethine N, thiol S and deprotonated hydroxyl group. The antioxidant activity of the synthesized compounds was tested against 2,2‐diphenyl‐1‐picrylhydrazyl) radical, which showed that the complexes demonstrate a better scavenging activity than their corresponding ligands. The cupric ion reducing antioxidant capacity method was also employed and the total equivalent antioxidant capacity values were found to be higher for the oxovandium(IV) complexes. DNA binding affinity of the compounds was determined using UV–visible and fluorescence spectra, revealing an intercalation binding mode. Higher cytotoxicity for the complexes compared to their ligands was found against human liver hepatocellular carcinoma (HepG2) and breast adenocarcinoma (MCF7) cell lines using MTT assay.  相似文献   

16.
The 2,4,6‐tris(2‐pyridyl)‐1,3,5‐triazine (tptz) undergoes hydrolysis in the presence of VO(SO4) in an alkaline solution, affording mainly the bis(2‐pyridyl carbonyl)amid ) VO2 complex, designated as [VO2(bpca)]. Single‐crystal X‐ray crystallography revealed that the coordination of V in complex is a distorted square‐pyramid coordinated with three nitrogen of bis(2‐pyridyl carbonyl)amid ) ligand and two binding oxygen atoms. The prepared complex which successfully supported on modified Fe3O4 nanoparticles using tetraethylorthosilicate (TEOS) and (3‐aminopropyl)trimethoxysilane(APTMS)was designated as Fe3O4@SiO2@APTMS@[VO2(bpca)] complex (nanocatalyst). The complex and nanocatalyst were characterized by means of FT‐IR, XRD, VSM, SEM and TEM. The catalytic activity of [VO2(bpca)] complex and Fe3O4@SiO2@APTMS@complex as catalysts 1 and 2 were evaluated by the epoxidation of geraniol , 3‐methyl‐2‐buten‐1‐ol , trans‐2‐hexen‐1‐ol and 1‐octen‐3‐ol with 70–98% conversions and 95–100% selectivities. Based on the obtained results, the heterogeneity and reusability of the catalyst seems promising. In addition, the in vitro antibacterial activity of [VO2 (bpca)] complex have also been evaluated and compared to the activities of other vanadium complexes, tptz ligand and two standard antibacterial drugs, Nalidixic acid and Vancomycin.  相似文献   

17.
A simple and practical strategy for the synthesis of a novel nano‐Fe3O4‐supported organocatalyst system based on 3,4‐dihydroxypyridine (Fe3O4/Py) has been developed. The prepared catalyst was characterized using Fourier transform infrared spectroscopy, transmission and scanning electron microscopies, X‐ray diffraction, vibrating sample magnetometry and energy‐dispersive X‐ray analysis. Accordingly, the Fe3O4/Py nanoparticles show a superparamagnetic property with a saturation magnetization of 61 emu g?1, indicating potential application in magnetic separation technology. Our experimental results reveal that the pyridine‐functionalized Fe3O4 nanoparticles are an efficient base catalyst for the domino condensation of various aromatic aldehydes, Meldrum's acid and 5‐methylpyrazol‐3‐amine under very mild reaction condition and in the presence of ethanol solvent. Moreover, the synthesized catalyst was used for one‐pot, three‐component condensation of aromatic aldehydes with barbituric acid and malononitrile to produce 7‐amino‐2,4‐dioxo‐5‐phenyl‐2,3,4,5‐tetrahydro‐1H‐pyrano[2,3‐d]pyrimidine‐6‐carbonitriles. All reactions are completed in short times and all products are obtained in good to excellent yields. Also, notably, the catalyst was reused five times without significant degradation in catalytic activity and performance. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
In general, the conductivity of polypyrrole (PPy) is reduced by addition of magnetic nanoparticles as the additives owing to insulating effect of magnetic nanoparticles. In this article, novel electromagnetic functionalized PPy composite nanostructures were prepared by a template‐free method associated with γ‐Fe2O3 nano‐needles as the hard templates in the presence of p‐toluene‐sulfonic acid (p‐TSA) and FeCl3·6H2O as the dopant and oxidant, respectively. It was found that the molar ratio of γ‐Fe2O3 to pyrrole monomer represented by [γ‐Fe2O3]/[Py] ratio strongly affected the morphology and the conductivity of the γ‐Fe2O3/PPy composite nanostructures. A growth mechanism for the composite nanostructures was proposed based on the variance of the morphology with the [γ‐Fe2O3]/[Py] ratio. Compared with previously reported γ‐Fe2O3/PPy composites, the as‐prepared novel composite nanostructures showed much higher conductivity (up to ~50 times higher). Moreover, the synthesized γ‐Fe2O3/PPy composite nanostructures displayed ferromagnetic behavior with a high coercive force. Explanations for these interesting observations were made in terms of the magnetic interaction between ferromagnetic γ‐Fe2O3 nano‐needles and spin‐polaron of PPy nanotubes. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4446–4453, 2009  相似文献   

19.
Iron oxide@Poly(Glycidylmethacrylate‐methyl methacrylate‐divinyl benzene) magnetic composite core shell microspheres Fe3O4@P(GMA‐MMA‐DVB) with epoxy group on the surface was designed and synthesized by solvothermal process followed by distillation polymerization. The surface epoxy group was modified with amino group of ethylene diamine (EDA) to prepare Fe3O4@P(GMA‐MMA‐DVB)/NH2 microspheres, and then effects of modification on the structure, interfacial behavior and hence demulsification of the amino modified epoxy coating were examined. The prepared magnetic microspheres were characterized using a laser particle size analyzer, transmission electron microscopy, Fourier transform infrared spectroscopy, vibrating sample magnetometry, and thermogravimetric analysis. Fourier transform infrared spectrometer analysis indicates the presence of epoxy group, amino group and Fe3O4 in the final Fe3O4@P(GMA‐MMA‐DVB) and Fe3O4@P(GMA‐MMA‐DVB)/NH2 magnetic core shell microspheres. Our experimental results show that Fe3O4@P(GMA‐MMA‐DVB)/NH2 magnetic core shell microspheres exhibit good interfacial and demulsification properties and able to remove emulsified water from stable emulsion. The resulting microspheres showed excellent magnetic properties and further these can be recycled and reused by magnetic separation.  相似文献   

20.
Mononuclear high‐spin [FeIII(Pyimpy)Cl3]?2 CH2Cl2 ( 1 ?2 CH2Cl2) and [FeIII(Me‐Pyimpy)Cl3] ( 2 ), as well as low‐spin FeII(Pyimpy)2](ClO4)2 ( 3 ) and [FeII(Me‐Pyimpy)2](ClO4)2 ( 4 ) complexes of tridentate ligands Pyimpy and Me‐Pyimpy have been synthesized and characterized by analytical techniques, spectral, and X‐ray structural analyses. We observed an important type of conversion and associated spontaneous reduction of mono‐chelated high‐spin FeIII ( 1 ?2 CH2Cl2 and 2 ) complexes to low‐spin bis‐chelated FeII complexes 3 and 4 , respectively. This process has been explored in detail by UV/Vis, fluorescence, and 1H NMR spectroscopic measurements. The high positive potentials observed in electrochemical studies suggested a better stabilization of FeII centers in 3 and 4 . Theoretical studies by density functional theory (DFT) calculations supported an increased stabilization for 3 in polar solvents. Self‐activated nuclease activity of complexes 1 ?2CH2Cl2 and 2 during their spontaneous reduction was examined for the first time and the mechanism of nuclease activity was investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号