首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Monodisperse poly(acrylic acid)‐modified Fe3O4 (PAA@Fe3O4) hybrid microspheres with dual responses (magnetic field and pH) were successfully fabricated. The PAA polymer was encapsulated into the inner cavity of Fe3O4 hollow spheres by a vacuum‐casting route and photo‐initiated polymerization. TEM images show that the samples consist of monodisperse porous spheres with a diameter around 200 nm. The Fe3O4 spheres, after modification with the PAA polymer, still possess enough space to hold guest molecules. We selected doxorubicin (DOX) as a model drug to investigate the drug loading and release behavior of as‐prepared composites. The release of DOX molecules was strongly dependent on the pH value due to the unique property of PAA. The HeLa cell‐uptake process of DOX‐loaded PAA@Fe3O4 was observed by confocal laser scanning microscopy (CLSM). After being incubated with HeLa cells under magnet magnetically guided conditions, the cytotoxtic effects of DOX‐loaded PAA@Fe3O4 increased. These results indicate that pH‐responsive magnetic PAA@Fe3O4 spheres have the potential to be used as anticancer drug carriers.  相似文献   

2.
Highly uniform and well‐dispersed CaF2 hollow spheres with tunable particle size (300–930 nm) have been synthesized by a facile hydrothermal process. Their shells are composed of numerous nanocrystals (about 40 nm in diameter). The morphology and size of the CaF2 products are strongly dependent on experimental parameters such as reaction time, pH value, and organic additives. The size of the CaF2 hollow spheres can be controlled from 300 to 930 nm by adjusting the pH value. Nitrogen adsorption–desorption measurements suggest that mesopores (av 24.6 nm) exist in these hollow spheres. In addition, Ce3+/Tb3+‐codoped CaF2 hollow spheres can be prepared similarly, and show efficient energy transfer from Ce3+ to Tb3+ and strong green photoluminescence of Tb3+ (541 nm, 5D47F5 transition of Tb3+, the highest quantum efficiency reaches 77 %). The monodisperse CaF2:Ce3+/Tb3+ hollow spheres also have desirable properties as drug carriers. Ibuprofen‐loaded CaF2:Ce3+/Tb3+ samples still show green luminescence of Tb3+ under UV irradiation, and the emission intensity of Tb3+ in the drug‐carrier system varies with the released amount of ibuprofen, so that drug release can be easily tracked and monitored by means of the change in luminescence intensity. The formation mechanism and luminescent and drug‐release properties were studied in detail.  相似文献   

3.
Small (2–28 nm) NaREF4 (rare earth (RE)=Nd–Lu, Y) nanoparticles (NPs) were prepared by an oil/water two‐phase approach. Meanwhile, hydrophilic NPs can be obtained through a successful phase‐transition process by introducing the amphiphilic surfactant sodium dodecylsulfate (SDS) into the same reaction system. Hollow‐structured NaREF4 (RE=Y, Yb, Lu) NPs can be fabricated in situ by electron‐beam lithography on solid NPs. The MTT assay indicates that these hydrophilic NPs with hollow structures exhibit good biocompatibility. The as‐prepared hollow‐structured NPs can be used as anti‐cancer drug carriers for drug storage/release investigations. Doxorubicin hydrochloride (DOX) was taken as model drug. The release of DOX from hollow α‐NaLuF4:20 % Yb3+, 2 % Er3+ exhibits a pH‐sensitive release patterns. Confocal microscopy observations indicate that the NPs can be taken up by HeLa cells and show obvious anti‐cancer efficacy. Furthermore, α‐NaLuF4:20 % Yb3+, 2 % Er3+ NPs show bright‐red emission under IR excitation, making both the excitation and emission light fall within the “optical window” of biological tissues. The application of α‐NaLuF4:20 % Yb3+, 2 % Er3+ in the luminescence imaging of cells was also investigated, which shows a bright‐red emission without background noise.  相似文献   

4.
New silver(I) acylpyrazolonato derivatives displaying a mononuclear, polynuclear, or ionic nature, as a function of the ancillary azole ligands used in the synthesis, have been fully characterized by thermal analysis, solution NMR spectroscopy, solid‐state IR and NMR spectroscopies, and X‐ray diffraction techniques. These derivatives have been embedded in polyethylene (PE) matrix, and the antimicrobial activity of the composite materials has been tested against three bacterial strains (E. coli, P. aeruginosa, and S. aureus): Most of the composites show antimicrobial action comparable to PE embedded with AgNO3. Tests by contact and release tests for specific migration of silver from PE composites clearly indicate that, at least in the case of the PE, for composites containing polynuclear silver(I) additives, the antimicrobial action is exerted by contact, without release of silver ions. Moreover, PE composites can be re‐used several times, displaying the same antimicrobial activity. Membrane permeabilization studies and induced reactive oxygen species (ROS) generation tests confirm the disorganization of bacterial cell membranes. The cytotoxic effect, evaluated in CD34+ cells by MTT (3‐(4,5‐dimethylthiazole‐2‐yl)‐2,5‐diphenyltetrazoliumbromide) and CFU (colony forming units) assays, indicates that the PE composites do not induce cytotoxicity in human cells. Studies of ecotoxicity, based on the test of Daphnia magna, confirm tolerability of the PE composites by higher organisms and exclude the release of Ag+ ions in sufficient amounts to affect water environment.  相似文献   

5.
Two macrobicyclic ligands derived from an 18‐membered tetralactam ring and 2,2′‐bipyridine or 2,6‐bis(pyrazol‐1‐yl)pyridine moieties, 1 and 2 , respectively, form stable complexes with GdIII, EuIII, and TbIII ions in aqueous solution. The ligand‐based luminescence is retained in the GdIII cryptates, whereas this radiative deactivation is quenched in the EuIII and TbIII cryptates by ligand‐to‐metal energy transfer, resulting in the usual metal‐centered emission spectra. Singlet‐ and triplet‐state energies, emission‐decay lifetimes, and luminescence yields were measured. [Tb⊂ 1 ]3+ cryptate shows a long luminescence lifetime (τ=1.12 ms) and a very high metal luminescence quantum yield (Φ=0.25) in comparison with those reported in the literature for Tb3+ complexes sensitized by a bipyridine chromophore. By comparison to [Ln⊂ 1 ]3+, [Ln⊂ 2 ]3+ presents markedly lower luminescence properties, due to worse interaction between the 2,6‐bis(pyrazol‐1‐yl)pyridine unit and the metal ion. Moreover, the luminescent metal and the triplet ligand energy levels of [Eu⊂ 2 ]3+ do not match. The effects of H2O molecules coordinated to the metal centre and of thermally activated decay processes on nonradiative deactivation to the ground‐state are also reported.  相似文献   

6.
The preparation of thermoresponsive drug carriers with a self‐destruction property is presented. These drug carriers were fabricated by incorporation of drug molecules and thermoresponsive copolymer, poly(N‐isopropylacrylamide‐co‐acrylamide), into silica nanoparticles in a one‐pot preparation process. The enhanced drug release was primarily attributed to faster molecule diffusion resulting from the particle decomposition triggered by phase transformation of the copolymer upon the temperature change. The decomposition of the drug carriers into small fragments should benefit their fast excretion from the body. In addition, the resulting drug‐loaded nanoparticles showed faster drug release in an acidic environment (pH 5) than in a neutral one. The controlled drug release of methylene blue and doxorubicin hydrochloride and the self‐decomposition of the drug carriers were successfully characterized by using TEM, UV/Vis spectroscopy, and confocal microscopy. Together with the nontoxicity and excellent biocompatibility of the copolymer/SiO2 composite, the features of controlled drug release and simultaneous carrier self‐destruction provided a promising opportunity for designing various novel drug‐delivery systems.  相似文献   

7.
Host‐guest encapsulation of functional organic dye into a porous metal‐organic framework can give rise to the development of new functional materials. In this work, by intercalating the stilbazolium‐type dye (DEAST)I (4′‐diethylamino‐N‐methyl stilbazolium) into four lanthanide layered metal‐organic complexes (Ln‐LMOCs), i. e. {[Ln(BTB)(H2O)2]?3(DMF)?2(H2O)}n (Ln=La (1), Nd (2), Sm (3), Er (4)), four responsive (DEAST)I@Ln‐LMOC composites have been prepared, serving as multifunctional performance platform. The core–shell structures of (DEAST)I@Ln‐LMOC composites have been fully characterized by IR, UV/Vis, PXRD, SEM, TEM, TGA and ESR. Significantly, after intercalation of dyes, the (DEAST)I@Ln‐LMOC composites exhibit enhanced luminescent sensing properties in detecting Fe3+ with much higher water stabilities. The luminescent sensing behavior stems from the fluorescence resonance energy transfer (FRET) from the π‐electron‐rich BTB ligands to the Fe3+, and their higher water stabilities are induced by electrostatic interactions and lower porosity. Specially, the characteristic emissions of Sm3+ will not be affected after the encapsulation guest dyes, which provide a theoretical guide for the modulation of luminescence devices. Finally, better ion conductivities and diminished photocurrents can be achieved after the embedding of the functional organic dye. In all, the formation of (DEAST)I@Ln‐LMOC composites with core–shell structures can be utilized as a multifunctional platform with good stability.  相似文献   

8.
A site‐selective controlled delivery system for controlled drug release is fabricated through the in situ assembly of stimuli‐responsive ordered SBA‐15 and magnetic particles. This approach is based on the formation of ordered mesoporous silica with magnetic particles formed from Fe(CO)5 via the surfactant‐template sol‐gel method and control of transport through polymerization of N‐isopropyl acrylamide inside the pores. Hydrophobic Fe(CO)5 acts as a swelling agent as well as being the source of the magnetic particles. The obtained system demonstrates a high pore diameter (7.1 nm) and pore volume (0.41 cm3 g?1), which improves drug storage for relatively large molecules. Controlled drug release through the porous network is demonstrated by measuring the uptake and release of ibuprofen (IBU). The delivery system displays a high IBU storage capacity of 71.5 wt %, which is almost twice as large as the highest value based on SBA‐15 ever reported. In vitro testing of IBU loading and release exhibits a pronounced transition at around 32 °C, indicating a typical thermosensitive controlled release.  相似文献   

9.
Heptamolybdate (Mo7O246?) was intercalated in the interlayer space between MgAl‐layered double hydroxides (Mo‐MgAl LDHs) by the hydrothermal and ion exchange method, and then polyurethane elastomer (PUE) based composites were prepared by the prepolymerization method with different amounts of Mo‐MgAl LDHs. X‐ray diffraction (XRD), Fourier transform infrared (FTIR) spectra, laser Raman spectroscopy (LRS), and scanning electron microscopy (SEM) were employed to characterize the obtained LDHs. The performance of the PUE/LDHs were evaluated by measuring their thermal gravimetric, heat release rate (HRR), and smoke density (Ds). The results show that PUE/LDH composites exhibit a lower peak heat release rate (pk‐HRR), Ds, and a prolonged combustion time, in comparison with neat PUE. Comparison between NO3‐MgAl LDHs and Mo‐MgAl LDHs containing composites show that the introduction of Mo6+ is able to facilitate flame retardance and smoke suppression efficiency, which results mainly from the presence of MoO3 derived from the decomposition of Mo7O246? intercalated LDHs. Mo‐MgAl LDHs reduce the pk‐HRR of composites by 39% with only 1 wt.% content, and the maximum Ds of composites is reduced to a minimal value of 274 with 10 wt.% Mo‐MgAl LDHs. More importantly, LDHs would improve the mechanical properties at a low content. The experimental results reveal the potential of Mo7O246? intercalated LDHs to improve both the flame retardancy and smoke suppression of PUE. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
Targeted drug delivery is a promising approach to overcome the limitations of classical chemotherapy. In this respect, Imatinib‐loaded chitosan‐modified magnetic nanoparticles were prepared as a pH sensitive system for targeted delivery of drug to tumor sites by applying a magnetic field. The proposed magnetic nanoparticles were prepared through modification of magnetic Fe3O4 nanoparticles with chitosan and Imatinib. The structural, morphological and physicochemical properties of the synthesized nanoparticles were determined by different analytical techniques including energy‐dispersive X‐ray spectroscopy (EDS), field emission scanning electron microscopy (FESEM), Fourier‐transform infrared (FTIR) spectroscopy, high resolution transmission electron microscopy (HR‐TEM), vibrating sample magnetometry (VSM), X‐ray diffraction (XRD) and X‐ray photoelectron spectroscopy (XPS). UV/visible spectrophotometry was used to measure the Imatinib contents. Thermal stability of the prepared particles was investigated and their efficiency of drug loading and release profile were evaluated. The results demonstrated that Fe3O4@CS acts as a pH responsive nanocarrier in releasing the loaded Imatinib molecules. Furthermore, the Fe3O4@CS/Imatinib nanoparticles displayed cytotoxic effect against MCF‐7 breast cancer cells. Results of this study can provide new insights in the development of pH responsive targeted drug delivery systems to overcome the side effects of conventional chemotherapy.  相似文献   

11.
The structures of three salts of 3‐cyano‐4‐dicyanomethylene‐5‐oxo‐4,5‐dihydro‐1H‐pyrrol‐2‐olate with alkali metals (Na, K and Rb) are related to their luminescence properties. The Rb salt, rubidium(I) 3‐cyano‐4‐dicyanomethylene‐5‐oxo‐4,5‐dihydro‐1H‐pyrrol‐2‐olate, Rb+·C8HN4O2, is isomorphous with the previously reported potassium salt. For the Na compound, sodium(I) 3‐cyano‐4‐dicyanomethylene‐5‐oxo‐4,5‐dihydro‐1H‐pyrrol‐2‐olate dihydrate, Na+·C8HN4O2·2H2O, two independent sodium ions, located on inversion centers, are coordinated by four water molecules each and additionally by two cyano groups for one and two carbonyl groups for the other. The luminescence spectra in solution are unaffected by the nature of the cation but vary strongly with the dielectric constant of the solvent. In the solid state, the emission maxima vary with structural features; the redshift of the maximum luminescence varies inversely with the distance between the stacked anions.  相似文献   

12.
An alkynyl‐protected gold nanocluster, Au22(tBuC≡C)18 ( 1 ), has been synthesized and its structure has been determined by single‐crystal X‐ray diffraction. The molecular structure consists of a Au13 cuboctahedron kernel and three [Au3(tBuC≡C)4] trimeric staples. The cluster 1 has strong luminescence in the solid state with a 15 % quantum yield, and it displays interesting thermochromic luminescence as revealed by temperature‐dependent emission spectra. The enhanced room‐temperature emission is characterized as thermally activated delayed fluorescence.  相似文献   

13.
Abstract. Sodium ethene‐bis‐nitrobenzenesulfonate, [Na2(ENS) · 6H2O]n( 1 ) was synthesized through coupling reaction of o‐nitrotoluenesulfonic acid in NaOH solution and characterized by single crystal X‐ray diffraction, elemental analysis, IR and 1H NMR spectroscopy, XRPD, DSC and TGA (where ENS2– = ethene‐bis‐nitrobenzenesulfonate). The asymmetrical unit of ( 1 ) consists of two octahedral NaI ions, and the neighboring metal centers are bridged by μ2 water molecules resulting in the formation of an inorganic tetranuclear unit. The tetranuclear units were connected through the ENS2– ligands into a 2D topology net. The weak π–π stacking and H‐bonding interactions further stabilized the structure. The crystals of (C7H6NO5S) · (H5O2)+ ( 2 ) were obtained by post‐processing the unreacted raw material to recycle. Furthermore, the rigidity and the conjugation effect of the aromatic system in compound 1 were increased through the coordination interactions of metal atoms to ligands, resulting in the emission coming from ligand enhanced with red‐shifting about 9 nm of the maximal wavelength. The conjugation effects and the steric arrangement of the substituent groups play the main role to the luminescence intensity and red‐shift effect.  相似文献   

14.
Novel drug‐loaded hydrogel beads for intestine‐targeted controlled release were developed by using pH‐ and temperature‐sensitive carboxymethyl chitosan‐graft‐poly(N,N‐diethylacrylamide) (CMCTS‐g‐PDEA) hydrogel as carriers and vitamin B2 (VB2) as a model drug. The hydrogel beads were prepared based on Ca2+ ionic crosslinking in acidic solution and formed dual crosslinked network structure. The structure of hydrogel and morphology of drug‐loaded beads were characterized by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). The study about swelling characteristics of hydrogel beads indicated that the beads had obvious pH‐ and temperature‐sensitivity. In vitro release studies of drug‐loaded beads were carried out in pH 1.2 HCl buffer solution and pH 7.4 phosphate buffer solution at 37°C, respectively. The results indicated that the dual crosslinked method could effectively control the drug release rate under gastrointestinal tract (GIT) conditions, which was superior to traditional single crosslinked beads. In addition, the effects of grafting percentage, pH value, and temperature on the release behavior of the VB2 were investigated. The drug release mechanism of CMCTS‐g‐PDEA drug‐loaded beads was analyzed by Peppa's potential equation. According to this study, the dual crosslinked hydrogel beads based on CMCTS‐g‐PDEA could serve as suitable candidate for drug site‐specific carrier in intestine. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
The mechanical properties and fire resistance of vinyl ester resin (VER) composites containing cage‐shaped octaphenyl silsesquioxane (OPS), incompletely cage‐shaped phenyl silsesquioxane (PhT7POSS), and ladder‐shaped phenyl silsesquioxane (PPSQ) were investigated. The POSS structure and dispersion have a great influence on the mechanical properties, thermal stability, and decomposition process of VER composites. The bending strength at break and modulus of the VER‐POSS composites were enhanced obviously, especially for VER‐PPSQ composite and VER‐OPS composite, respectively. In addition, PhT7POSS‐based VER composites revealed the lower values of the peak heat release rate, total heat release, and total smoke release in cone calorimetry tests due to the formation of dense carbon/silica protective layers that acted as a barrier to heat and mass transfer. Moreover, the flame‐retardant mechanisms of condensed phase and gas phase were also investigated in detail. These results illustrate VERs modified by OPS, PhT7POSS, and PPSQ are providing an applicable method to fabricate the composites with excellent flame‐retardant and mechanical properties.  相似文献   

16.
Controlled release of an anticancer drug, doxorubicin (dox), from metal–organic framework (MOF)–drug composites is demonstrated under different external stimuli. 1,3,5‐Benzenetricarboxylic acid (H3BTC) is used as an organic ligand, and iron acetate and zinc nitrate are used as metal sources to synthesize Fe–BTC and Zn–BTC MOFs, which are known to be biocompatible. The in situ formation of MOF–drug composites demonstrates high drug loading capacity compared to conventional methods. The present methodology is devoid of any extra steps for loading the drug after synthesis. Moreover, the drug loading is also independent of pore size of the MOF as the drug molecules are embedded inside the MOF during their in situ formation. The drug release was monitored under external stimuli including change to acidic pH and the presence of biocompatible liposomes for a period of more than 72 h. Steady‐state fluorescence spectroscopy is used to monitor the drug release as a function of time and confocal laser scanning microscopy is used to unravel the post‐release fate of doxorubicin in the presence of liposomes. It is found that drug release rate is higher for the Zn–BTC–dox composite than for the Fe–BTC–dox composite. This is attributed to the stronger binding between dox and Fe‐BTC than that between dox and Zn–BTC. This study highlights a novel approach for the preparation of MOF–drug composites in an aqueous medium for future biomedical applications.  相似文献   

17.
A novel mono‐component intumescent flame retardant named pentaerythritol phosphate melamine salt (PPMS)‐hybrid bismuth oxide (PPMS‐Bi2O3) was synthesized and carefully characterized by FTIR, 1H NMR, 31P NMR, SEM‐EDS, and TG analyses. Then, PPMS‐Bi2O3 was utilized as flame retardant for epoxy resins (EPs), and the thermal stability, flame retardancy, and smoke suppression properties of EP composites were investigated. TG results show that PPMS‐Bi2O3 is more conducive to enhance the thermal stability and char forming ability of EP composites compared with the same addition of PPMS or the mixture of PPMS and Bi2O3, and this positive effect is enhanced with the increasing Bi2O3 content. Cone calorimeter test reveals that the PPMS‐Bi2O3 can effectively reduce the heat release and smoke production in comparison with PPMS or the mixture of PPMS and Bi2O3 due to the formation of a more compact and intumescent char against fire, as judged by digital photographs and SEM images. EDS analysis indicates that the combination PPMS and Bi2O3 by hydrogen bonds promotes to generate more phosphorus‐rich and aromatization structures in the condensed phase that enhance the barrier effect and anti‐oxidation ability of the char, thus imparting higher flame retardant and smoke suppression efficiencies to EP composites.  相似文献   

18.
A highly luminescent Zn4L6 tetrahedron is reported with 3.8 nm perylene bisimide edges and hexadentate ZnII–imine chelate vertices. Replacing FeII and monoamines commonly utilized in subcomponent self‐assembly with ZnII and tris(2‐aminoethyl)amine provides access to a metallosupramolecular host with the rare combination of structural integrity at concentrations <10?7 mol L?1 and an exceptionally high fluorescence quantum yield of Φem=0.67. Encapsulation of multiple perylene or coronene guest molecules is accompanied by strong luminescence quenching. We anticipate this self‐assembly strategy may be generalized to improve access to brightly fluorescent coordination cages tailored for host–guest light‐harvesting, photocatalysis, and sensing.  相似文献   

19.
Novel magnetic‐targeted pH‐responsive drug delivery system have been designed by the layer‐by‐layer self‐ assembly of the polyelectrolytes (oligochitosan as the polycation and sodium alginate as the polyanion) via the electrostatic interaction with the oil‐in‐water type hybrid emulsion droplets containing the superparamagnetic ferroferric oxide nanoparticles and drug molecules [dipyridamole (DIP)] as cores. Here the drug molecules were directly encapsulated into the interior of droplets without etching the templates and refilling with the desired guest molecules. The drug‐delivery system showed high encapsulation efficiency of drugs and drug‐loading capacity. The cumulative release ratio of dipyridamole from the oligochitosan/sodium alginate multilayer‐encapsulated magnetic hybrid emulsion droplets (DIP/Fe3O4‐OA/OA)@(OCS/SAL)4 was up to almost 100% after 31 h at pH 1.8. However, the cumulative release ratio was only 3.3% at pH 7.4 even after 48 h. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

20.
Most multi‐action PtIV prodrugs have bioactive ligands containing carboxylates. This is probably due to the ease of carboxylating the OH axial ligands and because following reduction, the active drug is released. A major challenge is to expand the arsenal of bioactive ligands to include those without carboxylates. We describe a general approach for synthesis of PtIV prodrugs that release drugs with OH groups. We linked the OH groups of gemcitabine (Gem), paclitaxel (Tax), and estramustine (EM) to the PtIV derivative of cisplatin by a carbonate bridge. Following reduction, the axial ligands lost CO2, rapidly generating the active drugs. In contrast, succinate‐linked drugs did not readily release the free drugs. The carbonate‐bridged ctc‐[Pt(NH3)2(PhB)(Gem‐Carb)Cl2] was significantly more cytotoxic than the succinate‐bridged ctc‐[Pt(NH3)2(PhB)(Gem‐Suc)Cl2], and more potent and less toxic than gemcitabine, cisplatin, and co‐administration of cisplatin and gemcitabine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号