首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
In this paper, three new copper (II) complexes, [Cu(4‐mphen)(tyr)(H2O)]ClO4 (1) , [Cu(5‐mphen)(tyr)(H2O)]ClO4·1.5H2O (2) and [Cu (tmphen)(tyr)(NO3)]0.5H2O (3) (4‐mphen: 4‐methyl‐1,10‐phenanthroline, 5‐mphen: 5‐methyl‐1,10‐phenanthroline, tmphen: 3,4,7,8‐tetramethyl‐1,10‐phenanthroline and tyr: L‐tyrosine), were synthesized and characterized using elemental analyses, FT‐IR, ESI‐MS, cyclic voltammetry and single‐crystal X‐ray diffraction. It was found that the complexes adopt a distorted five‐coordinate square pyramidal geometry. The interaction of the three complexes with calf thymus DNA was also investigated using UV–visible absorption spectra, ethidium bromide and Hoechst 33258 displacement assay and thermal denaturation. The DNA cleavage activity of the complexes, monitored using gel electrophoresis, showed significant damage of the pUC19 plasmid DNA. Binding activity of bovine serum albumin (BSA) reveals that these complexes can strongly quench the fluorescence of BSA through a static quenching mechanism. The results suggested that interaction of the complexes with DNA occurred through a partial intercalation into the minor grooves of DNA. In addition, interaction of the complexes with bovine serum albumin quenched the fluorescence emission of the tryptophan residues of the protein binding constants and thermodynamic parameters were obtained from the fluorescence quenching experiments at different temperatures. Free radical scavenging activities of the complexes were determined by various in vitro assays such as 1,1‐diphenyl‐2‐picryl‐hydrazyl free radicals (DPPH˙) and H2O2 scavenging methods. In addition, the cytotoxicity of these complexes in vitro on tumor cell lines (Caco‐2 and MCF‐7) was examined by XTT and showed better antitumor effect on the tested cells. ROS (reactive oxygen species) and comet experiments are consistent with each other and these complexes lead to DNA damage via the production of ROS. The effect of the hydrophobic properties of the synthesized complexes on DNA and BSA binding activities were discussed.  相似文献   

2.
范赛荣  朱龙观 《中国化学》2005,23(10):1292-1296
Cobait(Ⅱ) nitrate reacted with 1,10-phenanthroline (phen) and 5-sulfosaiicylic acid (H3ssal) to yield the cobait(Ⅰ) complex [Co(phen)2(H2O)2](Hssal)o4H2O (1) and the reaction of 1 with copper acetate led to a novel complex [Co(phen)(H2O)4][Cu2(ssal)2(phen)2]·5H2O (2). These two complexes were cationanion species and the cationic motif [Co(phen)2(H2O)2]^2+of 1 could be converted to [Co(phen)(H2O)4]^2+ in the formation process of new anion [Cu2(phen)2(ssal)2]^2- of 2. In both complexes abundant hydrogen bonds construct different supramolecular architectures, thus the conversion reaction can provide a new path to create novel supramolecular network.  相似文献   

3.
Six new coordination complexes, Ln2(2,2′-oba)2(phen)2(ox)(H2O)2 (Ln = Eu 1, Tb 2), Ln4(2,2′-oba)6(phen)2 (Ln = Eu 3, Tb 4), Eu4(2,2′-oba)6(phen)2(H2O) (5), and K[Eu(2,2′-oba)2(phen)2] (6) [2,2′-H2oba = 2,2′-oxybis(benzoic acid), phen = 1,10-phenanthroline, H2ox = oxalic acid] were synthesized by hydrothermal reactions with the same compound molar ratios but different modulatory reagents (MRs). Complexes 1–5 have different 1-D chain structures and 6 shows a mononuclear structure. These complexes form diverse 3-D supramolecular networks through hydrogen bonds. The interaction between these complexes and hippuric acid (HA) or bovine serum albumin (BSA) was investigated by fluorescence spectral analysis. Interestingly, the hippuric acid could quench the luminescence of these complexes while the fluorescence of BSA could be quenched by these complexes. Results suggested that the complexes may be potential luminescent testing reagents for HA or BSA by significant fluorescence quenching of Ln3+ or BSA, respectively, through a static and dynamic quenching process.  相似文献   

4.
Four lanthanide supramolecular coordination compounds, [Eu(gly)2(phen)2(H2O)2](ClO4)3(phen)4 · H2O ( 1 ), [Eu2(APA)6(phen)2](ClO4)6(phen)4 · 3H2O ( 2 ), [Tb2(ABA)4(phen)4](ClO4)6(phen)4 ( 3 ), and [Eu2(AHA)4(phen)4](ClO4)6(phen)2 · 2H2O · 2C2H5OH ( 4 ) (gly = glycine, APA = 3‐aminopropionic acid, ABA = 4‐aminobutanoic acid, AHA = 6‐aminohexanoic acid, phen = 1, 10‐phenanthroline), were synthesized and characterized by single crystal X‐ray diffraction. Compound 1 has a 2‐D supramolecular layered structure of mononuclear coordination cations and free phen molecules connected via hydrogen bonding and π‐π stacking interactions. 2 forms a 3‐D supramolecular network by hydrogen bonding between binuclear coordination cations and free phen molecules, between coordination cations and lattice water molecules, and π‐π stacking interactions between free phen molecules. Compounds 3 and 4 form 2‐D supramolecular structures with π‐π stacking between coordinating phen molecules, and between free phen molecules hydrogen‐bonded to the binuclear coordination cations. The high‐resolution emission spectra show only one Eu3+ ion site in the title complexes. The aqueous solutions of the title complexes are all photochromic with the color of the solution changing from yellow to green when irradiated by mercury lamp. During the decoloration process, they return to yellow color.  相似文献   

5.
The title compound, [Cu2(C9H10NO3)2(NO3)2(C10H8N2)(H2O)2]n, contains CuII atoms and l ‐tyrosinate (l ‐tyr) and 4,4′‐bipyridine (4,4′‐bipy) ligands in a 2:2:1 ratio. Each Cu atom is coordinated by one amino N atom and two carboxylate O atoms from two l ‐tyr ligands, one N atom from a 4,4′‐bipy ligand, a monodentate nitrate ion and a water molecule in an elongated octahedral geometry. Adjacent Cu atoms are bridged by the bidentate carboxylate groups into a chain. These chains are further linked by the bridging 4,4′‐bipy ligands, forming an undulated chiral two‐dimensional sheet. O—H...O and N—H...O hydrogen bonds connect the sheets in the [100] direction. This study offers useful information for the engineering of chiral coordination polymers with amino acids and 4,4′‐bipy ligands by considering the ratios of the metal ion and organic components.  相似文献   

6.
Two μ‐oxamido‐bridged dicopper(II) complexes, namely [Cu2(hmpoxd)(H2O)(phen)](ClO4) ( 1 ) and [Cu2(papo)(H2O)(phen)](ClO4)·2H2O ( 2 ), where H3hmpoxd and H3papo represent N‐(2‐hydroxy‐5‐methylphenyl)‐N′‐[3‐(dimethylamino)propyl]oxamide and N‐(2‐hydroxylphenyl)‐N′‐(3‐aminopropyl)oxamide, respectively, and phen represents 1,10‐phenanthroline, were synthesized. Single‐crystal X‐ray crystallography and other methods revealed that the two copper(II) ions in complex 1 are bridged by the cis‐hmpoxd3? with Cu···Cu separation of 5.1896(7) Å, in which the inner (Cu1) and outer (Cu2) copper(II) atoms are located in square‐planar and square‐pyramidal geometries, respectively. To evaluate the effects of bridging ligand hydrophobicity on DNA/protein binding and potential anticancer activities, comparative studies of the reactivity towards herring sperm DNA and protein bovine serum albumin (BSA) as well as cytotoxicity of complex 1 with our previously reported complex 2 were conducted theoretically and experimentally. The results indicate that the two complexes can interact interactively with DNA, and bind to BSA via the binding sites Trp213 for 1 and Trp134 for 2 . Interestingly, the in vitro anticancer activities and DNA/protein binding affinities consistently follow the order of 1 > 2 .  相似文献   

7.
The synthesis and crystal structure elucidation of a novel dinuclear heteroleptic copper(II) complex has led to an alternative mechanism in the formation of covalent hydrates. During further studies on the synthesis and properties of [Cu2(ophen)2] ( 1 ), a dinuclear complex of copper(I) with 1 H‐[1,10]‐phenanthrolin‐2‐one (Hophen), two intermediates/alternative products 2 and 3 were isolated. The dinuclear, antiferromagnetic complex [Cu2(ophen)2(phen)2] ? (NO3)2 ? 9H2O ( 3 , phen=1,10‐phenanthroline) contains two five‐coordinate copper(II) ions, both with trigonal‐bipyramidal coordination, which are bridged together through deprotonated hydroxyl groups with a Cu? Cu non‐bonding distance of 3.100 Å. Complex [Cu(phen)2(H2O)] ? (NO3)2 ( 2 ) is a polymorph of a previously reported material. The occurrence of 2 and 3 has led us to propose a variation to the Gillard mechanism for the formation of covalent hydrates in bidentate N‐heterocycles in which the attacking nucleophile may be the deprotonated form of 2 , [Cu(phen)2(OH)]?, rather than free OH?.  相似文献   

8.
Using Cu(NO3)2 as metal salt, [Cu3(cpida)(phen)2(H2O)5] · 3NO3 · 2H2O ( 1 ) and {[Cu2(cpida)(phen)(NO3)] · 2H2O}n ( 2a ) were synthesized from an identical starting mixture with 2‐(carboxyphenyl)iminodiacetic acid (H3cpida) and 1,10‐phenanthroline (phen) at 5 °C and 25 °C, respectively. Additionally, complexes 2b – 2d , which are isostructural to 2a , were obtained using Cu(ClO4)2, Cu(BF4)2, and Cu(CF3SO3)2 instead of Cu(NO3)2 in the temperature range 0–65 °C. 1 is characterized by a V‐shaped trinuclear CuII monomer, whereas 2a – 2d features a one‐dimensional (1D) Δ CuII chain. Abundant hydrogen bonds constructed by the nitrate anion are observed in 1 . A structural transformation study was undertaken and revealed that 1 could completely transform into 2a from the reaction solution at 25 °C and the temperature plays a crucial role in the process. Magnetic measurements revealed that 1 exhibits dominant antiferromagnetic behavior, whereas 2a presents dominant ferromagnetic behavior.  相似文献   

9.
Two new novel complexes, [Cu4(Endc)4(phen)4]⋅7(H2O)⋅2(O) and [Mn2(Endc)2(phen)2(H2O)2]⋅(H2O) (phen =1,10‐phenanthroline, H2Endc = endo ‐norbornene‐cis ‐5,6‐dicarboxylic acid), were synthesized and structurally characterized using IR and 1H NMR spectroscopies, elemental analysis and single‐crystal X‐ray diffractometry. Their reactivity with calf thymus DNA and HeLa cell DNA was measured using UV absorption and fluorescence spectroscopies. The results indicated that these complexes can bind to DNA with different binding affinity. Gel electrophoresis assay demonstrated the ability of the complexes to cleave pBR322 plasmid DNA. Apoptotic study showed that the complexes exhibit significant cancer cell inhibitory rates. Eventually, the complexes can suitably dock with a special DNA (PDB ID: 1AIO).  相似文献   

10.
We report the development of a series of rhenium(I) polypyridine complexes appended with an electron‐rich diaminoaromatic moiety as phosphorogenic sensors for nitric oxide (NO). The diamine complexes [Re(N^N)(CO)3(py‐DA)][PF6] (py‐DA=3‐(N‐(2‐amino‐5‐methoxyphenyl)aminomethyl)pyridine; N^N=1,10‐phenanthroline (phen) ( 1 a ), 3,4,7,8‐tetramethyl‐1,10‐phenanthroline (Me4‐phen) ( 2 a ), 4,7‐diphenyl‐1,10‐phenanthroline (Ph2‐phen) ( 3 a )) have been synthesized and characterized. In contrast to common rhenium(I) diimines, these diamine complexes were very weakly emissive due to quenching of the triplet metal‐to‐ligand charge‐transfer (3MLCT) emission by the diaminoaromatic moiety through photoinduced electron transfer (PET). Upon treatment with NO, the complexes were converted into the triazole derivatives [Re(N^N)(CO)3(py‐triazole)][PF6] (py‐triazole=3‐((6‐methoxybenzotriazol‐1‐yl)methyl)pyridine; N^N=phen ( 1 b ), Me4‐phen ( 2 b ), Ph2‐phen ( 3 b )), resulting in significant emission enhancement (I/I0≈60). The diamine complexes exhibited high reaction selectivity to NO, and their emission intensity was found to be independent on pH. Also, these complexes were effectively internalized by HeLa cells and RAW264.7 macrophages with negligible cytotoxicity. Additionally, the use of complex 3 a as an intracellular phosphorogenic sensor for NO has been demonstrated.  相似文献   

11.
The interaction of BSA and FeIII complexes ([FeIII(gly)(H2O)4]2+, [FeIII(ida)(H2O)3]+, and [FeIII(nta)(H2O)2], gly—glyane, ida—iminodiacetic acid, nta—triglycolamic acid) as well as the sonocatalytic damage to BSA was studied by UV-vis and fluorescence spectra. In addition, the influences of ultrasonic irradiation time and FeIII complex concentration were also examined on the sonocatalytic damage to BSA. The results showed that the fluorescence quenching of BSA solution caused by the FeIII complexes belonged to the static quenching process. The BSA and FeIII complexes interacted with each other mainly through weak interaction and coordinate actions. The binding association constants (K) and binding site numbers (n) were calculated. The results were as follows: K 1 = 0.5353 × 104 l mol−1 and n 1 = 0.9812 for [FeIII(gly)(H2O)4]2+, K 2 = 1.4285 × 104 l mol−1 and n 2 = 1.0899 for [FeIII(ida)(H2O)3, and K 3 = 0.4411 × 104 l mol−1 and n 3 = 0.9471 for [FeIII(nta)(H2O)2]. Otherwise, under ultrasonic irradiation the BSA were obviously damaged by the FeIII complexes. The damage degree rose up with the increase of ultrasonic irradiation time and FeIII complex concentration. And that, [FeIII(nta)(H2O)2] exhibited in a way higher sonocatalytic activity than [FeIII(gly)(H2O)4]2+ and [FeIII(ida)(H2O)3]+.  相似文献   

12.
Several Cu(II) complexes with 1,2,4-triazolo[1,5-a]pyrimidine (tp) and its 5,7-dimethyl derivative (dmtp) have been isolated and structurally characterized. Five of them are mononuclear and contain 1,10-phenanthroline (phen) or ethylenediamine (en) as auxiliary ligands, their formula being [Cu(H2O)(phen)(tp)2](ClO4)2 · H2O, [Cu(H2O)(phen)(dmtp)2](ClO4)2, [Cu(NO3)(H2O)(phen)(tp)](NO3), [Cu(H2O)2(en)(tp)2](ClO4)2 and [Cu(H2O)2(en)(dmtp)2](ClO4)2. In all these compounds the tp or dmtp ligand is monodentately coordinated via the nitrogen atom in position 3. The auxiliary ligand influences the coordination number, which is five when this ligand is phen and six when it is en whereas the number of triazolopyrimidine ligands linked to the metal seems to be influenced by the nature of the counteranion. A dinuclear compound with tp has also been isolated, its formula being [Cu2(OH)(H2O)2.5(tp)5](ClO4)3·(H2O)1.5, with both metal atoms linked by an hydroxydo group and by a tp bridging ligand, coordinated to one of the copper atoms via N3 and to the other via N4. This compound has several unusual features among the metal complexes with triazolopyrimidine derivatives: the presence of two different kinds of bridging moieties, the coexistence of bridging and terminal ligands and the formation of a N3–N4 bridge for a Cu(II) dinuclear compound for a derivative without exocyclic oxygen atoms.  相似文献   

13.
The title compound, {[Cu(C14H9NO3)(C5H5N)]·C3H7NO}n or {[Cu2L2(py)2]·2DMF}n [py is pyridine, L is 4‐(salicylideneamino)benzoate and DMF is dimethylformamide], is composed of dimeric dicopper [CuL(py)]2 building units, which are interlinked into a one‐dimensional chain through the formation of Cu—OCOO bonds. The dimeric unit is centrosymmetric, containing two CuII atoms linked by bridging phenolate O atoms into a Cu2O2 plane with a chelating Cu—O bond length of 1.927 (2) Å and a bridging Cu—O bond length of 2.440 (2) Å. Interchain C—H...O and π–π stacking interactions are responsible for an extensive three‐dimensional structure in which the resulting channels are filled by DMF solvent molecules.  相似文献   

14.
A new tetracopper(II) complex bridged by oxamido and carboxylate, [Cu4(bhyox)2(phen)2(H2O)2](pic)2, where H3bhyox, phen and Hpic denote N-benzoate-N′-[2-(2-hydroxyethylamino)ethyl]oxamide, 1,10-phenanthroline, and 2,4,6-trinitrophenol, respectively, has been synthesized and characterized by elemental analysis, molar conductivity, IR, electronic spectra, and single-crystal X-ray diffraction. The crystal structure reveals that the cyclic tetracopper(II) cation [Cu4(bhyox)2(phen)2(H2O)2]2+ with an embedded center of inversion is assembled by a pair of cis-oxamido-bridged bicopper(II) units via carboxylate bridges, in which copper(II) ions are distorted square pyramidal. The Cu?Cu separations through the oxamido and the carboxylate bridges are 5.1944(6) and 5.3344(7)?Å, respectively. In the crystal, the supramolecular structure is composed of classical hydrogen bonding chains assembled by 2D non-classical hydrogen-bonding networks and ππ stacking interaction. In vitro cytotoxicity experiment shows that the tetracopper(II) complex exhibits cytotoxic activity against the SMMC7721 and A549 cell lines. The reactivity towards herring sperm DNA (HS-DNA) and protein bovine serum albumin (BSA) suggests that the tetracopper(II) complex can interact with the DNA by intercalation, and the complex binds to protein BSA responsible for quenching of tryptophan fluorescence by static quenching mechanism.  相似文献   

15.
利用溶液法合成了配合物[Ni(Hlact)2(phen)]·2H2O(1),并对该配合物进行了元素分析、红外光谱和X-射线单晶衍射表征。通过荧光光谱法研究了不同温度下配合物1与牛血清白蛋白相互作用的荧光强度的变化,计算在不同温度下,配合物1与牛血清白蛋白(BSA)的结合常数、结合位点数以及热力学函数,进一步讨论了配合物1与BSA相互作用的作用力类型和两者之间的距离。结果表明,配合物1对牛血清白蛋白的荧光猝灭为静态猝灭过程,它与牛血清白蛋白的相互作用有一个位点,结合常数的平均值5.06×105 L·mol-1,作用距离为2.35 nm,相互作用力表现为氢键和范德华相互作用。  相似文献   

16.
利用溶液法合成了配合物[Ni(Hlact)2(phen)]·2H2O(1),并对该配合物进行了元素分析、红外光谱和X-射线单晶衍射表征。通过荧光光谱法研究了不同温度下配合物1与牛血清白蛋白相互作用时的荧光强度的变化,计算了在不同温度下,配合物1与牛血清白蛋白(BSA)的结合常数、结合位点数以及热力学函数,并进一步讨论了配合物1与BSA相互作用时的作用力类型和两者之间的距离。结果表明,配合物1对牛血清白蛋白的荧光猝灭为静态猝灭过程,它与牛血清白蛋白的相互作用有一个位点,结合常数的平均值5.06×105L·mol-1,作用距离为2.35 nm,相互作用力表现为氢键和范德华力。  相似文献   

17.
Three new copper(II) complexes with isonicotinic acid N-oxide (HL) and 1,10-phenanthroline (phen) as ligands, [Cu(L)(phen)(H2O)]2(NO3)2···2H2O (1), [Cu(L)(phen)(H2O)]2(ClO4)2···2H2O (2), and [Cu(L)(phen)Br]2- [Cu(L)(phen)(H2O)]2Br2···6H2O (3) have been synthesized and structurally characterized. The structures of all three complexes feature a Cu2 dimer formed by two Cu(II) ions interconnected by two bridging ligands. Each copper(II) ion has a distorted square pyramidal coordination geometry with elongated axial coordination by an aqua ligand or halogen anion. The isonicotinic acid N-oxide anion is bidentate, being coordinated to two Cu(II) ions through its N-O oxygen and one of its carboxylate oxygen atoms. Magnetic susceptibility measurements show a Curie–Weiss paramagnetic behavior characteristic of one unpaired electron for a copper(II) ion for all three complexes.  相似文献   

18.
The title compound [La(phen)2(H2O)2(NO3)2](NO3) · 2(phen)(H2O) with phen = 1,10‐phenanthroline was prepared by the stoichiometric reaction of La(NO3)3 · 6 H2O and 1,10‐phenanthroline monohydrate in a CH3OH–H2O solution. The crystal structure (triclinic, P 1 (no. 2), a = 11.052(2), b = 13.420(2), c = 16.300(2) Å, α = 78.12(1)°, β = 88.77(1)°, γ = 83.03(1)°, Z = 2, R = 0.0488, wR2 = 0.1028) consists of [La(phen)2(H2O)2(NO3)2]2+ complex cations, NO3 anions, phen and H2O molecules. The La atom is 10‐fold coordinated by four N atoms of two bidentate chelating phen ligands and six O atoms of two H2O molecules and two bidentate chelating NO32– ligands with d(La–O) = 2.522–2.640 Å and d(La–N) = 2.689–2.738 Å. The intermolecular π‐π stacking interactions play an essential role in the formation of two different 2 D layers parallel to (001), which are formed by complex cations and uncoordinating phen molecules, respectively. The uncoordinated NO3 anions and H2O molecules are sandwiched between the cationic and phen layers.  相似文献   

19.
Two copper‐containing compounds based on MoO42–, [Cu4(phen)42‐OH)23‐OH)2(H2O)2][MoO4]2 · 10H2O ( 1 ) and [Cu(phen)2Mo2O7(phen)] · 8H2O ( 2 ) (phen = 1,10‐phenanthroline), were hydrothermally synthesized. In the crystal lattices of 1 and 2 , discrete octameric water cycles and 2D layer water clusters were observed. The cyclic water octamer clusters exist stably in the channels constructed by [Cu4(phen)4(OH)4(H2O)2]2+ and MoO42– by hydrogen bonds in 1 at low temperature and 2D layer water clusters are formed by (H2O)16 units in 2 .  相似文献   

20.
Slow diffusion reaction of 2,2′‐dithiodibenzoic acid (dtdb) with CuCl2 in the presence of N‐donor ligands results in the formation of different coordination polymers where both S–S and C–S scission and oxidation of S is observed. X‐ray diffraction analysis of [Cu(tdb)(phen)(H2O)]2 · 2H2O.2DMF] ( 1 ), [Cu(tdb)(py)2(H2O)]2 ( 3 ), and [Cu(tdb)(bipy)(H2O)]2 · 0.5H2O ( 4 ) (tdb = thiodibenzoic acid, phen = phenanthroline, py = pyridine, bipy = 2,2′‐bipyridine) show that the metal ions are coordinated to the carboxylate oxygen atoms of the in situ generated tdb ligand in a monodenate fashion. In [Cu(phen)(SO4)2(H2O)2]n ( 2 ) and [Cu(bipy)(SO4)2(H2O)2]n ( 5 ), the sulfur is oxidized to sulfate ions prior to coordination with the metal. Complex 1 has a dimeric structure with π–π interactions between the phen ligands, whereas 3 and 4 form 1D polymeric chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号