共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Lanthanum nitrate was an efficient and recoverable homogeneous catalyst for the transesterification of dimethyl carbonate
(DMC) with ethanol. It was reused 5 times for the transesterification without loss of its catalytic activity. 相似文献
3.
Fariba Sadri Abdolhossain Massoudi Mehdi Khoobi Roghayeh Tarasi Abbas Shafiee 《Green Chemistry Letters and Reviews》2014,7(3):257-264
Magnetically nano Fe3O4 efficiently catalyzes green oxidation of primary and secondary benzylic and aliphatic alcohols to give the corresponding carbonyl products in good yields. The reactions were carried out in an aqueous medium in the presence of hydrogen peroxide as an oxidant at 50°C. In addition, the magnetically nano Fe3O4 catalyst could be reused up to four runs without any significant loss of activities. Catalyst was characterized by scanning electron microscopy, transmission electron microscopy, X-ray powder diffraction, thermogravimetric analysis, vibrating sample magnetometer, and IR. 相似文献
4.
5.
T. Srikanth Reddy 《Tetrahedron letters》2006,47(14):2341-2344
Primary alcohols undergo selective and efficient tetrahydropyranylation in the presence of a catalytic amount of La(NO3)3·6H2O under solvent-free conditions. 相似文献
6.
At room temperature and under solvent‐free conditions, various types of alcohols and phenols were efficiently protected within a few minutes using hexamethyldisilazane and magnetically recoverable Fe3O4. Preferential protection of primary alcohols was observed when they competed with secondary or tertiary alcohols. Highly selective protection of phenols in the presence of aromatic amines or thiophenol was also observed. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
7.
Sucrose chelated Bismuth ferrite (BiFeO3) nanoparticles as a novel heterogeneous catalyst was synthesized by an auto combustion route. Different calcination temperatures (150 °C, 450 °C, 550 °C, 650 °C, 750 °C and 850 °C) have been employed to obtain single phased BiFeO3 nanoparticles. The perovskite structure formation and disappearance of organic phase (sucrose) was obtained by Fourier transform infrared spectroscopy (FT‐IR). Phase determination and structural characterization was carried out by powder X‐ray diffraction (XRD). The magnetic properties were analyzed by vibrating sample magnetometer (VSM) whereas surface area/pore volume was obtained by Brunauer–Emmett–Teller (BET). Transmission electron microscope (TEM) analyzed the particles size and morphology. Thermal stability was investigated by thermogravimetric analysis (TGA) and determination of constituent elements was carried out by X‐ray Photo‐Electron Spectroscopy (XPS). Raman spectroscopy confirmed the perovskite structure of the synthesized materials. The BiFeO3 nanoparticles so obtained were employed as heterogeneous catalyst for the synthesis of polyhydroquinoline derivatives. All the polyhydroquinoline derivatives were characterized by Fourier transform infrared spectroscopy (FT‐IR) and Nuclear magnetic resonance spectroscopy (1H NMR). For the very first time ever we have used BiFeO3 as a recyclable magnetic nanocatalyst in the one‐pot four component cyclization reaction of benzaldehyde, ethylacetoacetate/methylacetoacetate, dimedone/cyclohexane‐1,3‐dione, and ammonium acetate for the synthesis of polyhydroquinoline derivatives without solvent under refluxing conditions to provide excellent yields of products. BiFeO3 nanocatalyst (without any functionalization/surface coatings) shows easy magnetic separation, recyclability, reusability along with excellent yield of polyhydroquinoline derivatives in an economic and benign way. 相似文献
8.
RuIII(OTf)SalophenCH2–NHSiO2–Fe: an efficient and magnetically recoverable catalyst for trimethylsilylation of alcohols and phenols with hexamethyldisilazane 下载免费PDF全文
Maryam Torki Shahram Tangestaninejad Valiollah Mirkhani Majid Moghadam Iraj Mohammadpoor‐Baltork 《应用有机金属化学》2014,28(4):304-309
Efficient trimethylsilylation of alcohols and phenols with hexamethyldisilazane (HMDS) catalyzed by ruthenium(III) complex of chloromethylated Salophen supported on nanomagnetic materials is reported. First, the iron nanomagnets were silica coated, functionalized with amine and then ruthenium CM‐Salophen was successfully bonded to their surface. The catalyst, RuIII(OTf)SalophenCH2–NHSiO2–Fe, was characterized by elemental analysis, FT‐IR and UV–visible spectroscopic techniques, transmission electron microscopy and inductively coupled plasma (ICP). The RuIII(OTf)SalophenCH2–NHSiO2–Fe catalyzed trimethylsilylation of primary and secondary alcohols as well as phenols, and the corresponding TMS ethers were obtained in high yields and short reaction times at room temperature. This new heterogenized trimethylsilylation catalyst is easily recovered with a magnet and showed no appreciable loss of activity even after five consecutive runs. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
9.
10.
P(AA)‐Ag heterogeneous catalyst system comprised of Ag nanoparticles embedded within hydrogel matrices has been described for the selective aerobic oxidation of alcohols and reduction of nitro phenols in water. P(AA)‐Ag nanocomposite was characterized by Fourier transform infrared (FT‐IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermal gravimetric analysis (TGA), X‐Ray photoelectron spectroscopy (XPS) and inductively coupled plasma atomic emission spectrometer (ICP). Catalytic activity of p(AA)‐Ag catalyst was investigated in the aerobic oxidation of primary alcohols and reduction of nitro compounds by emphasizing the effect of different parameters such as temperature, catalyst amount, substituent effect, etc. The catalyst was easily recovered from the reaction medium and it could be re‐used for other three runs without significant loss of activity. 相似文献
11.
《Tetrahedron letters》2019,60(23):1518-1521
An immobilized polymer-supported vanadium-binaphthylbishydroxamic acid (PS-VBHA) has been developed as an efficient, reusable catalyst for the asymmetric epoxidation of allylic alcohols. This PS-VBHA catalyst shows comparable catalytic performance to that of the parent V-BBHA catalyst and can be reused five times without significant loss of enantioselectivity. 相似文献
12.
13.
Seyed Jamal Alavi Hamid Sadeghian Seyed Mohammad Seyedi Hossein Eshghi Alireza Salimi 《应用有机金属化学》2018,32(3)
In this work, a new Fe3O4/AlFe/Te nanocomposite was synthesized by a one‐step sol–gel method. The Fe3O4 magnetic nanoparticles (MNPs) were prepared and then mixed with aluminum telluride (Al2Te3) in an alkali medium to produce the desired catalyst. After characterization of the Fe3O4/AlFe/Te nanocomposite by SEM, TEM, EDS, XRD, and ICP analyses, it was used in the esterification reaction. This heterogeneous catalyst showed high catalytic activity in the esterification of commercially available carboxylic acids with various alcohols to produce the desired esters at high conversions under neat conditions. The Fe3O4/AlFe/Te nanocomposites were separated from the reaction mixture via an external magnet and re‐used 8 times without significant loss of catalytic activity. 相似文献
14.
Vanadium supported on spinel cobalt ferrite nanoparticles was synthesized and characterized using Fourier transform infrared spectroscopy, X‐ray diffraction, energy‐dispersive X‐ray analysis and transmission electron microscopy. For the first time, the prepared material was used for the catalytic degradation of methylene blue as an organic dye in the presence of hydrogen peroxide as a green oxidant and NaHCO3 as a co‐reagent at room temperature. The dependency of removal percentage on various parameters such as amount of catalyst, pH, reaction time and temperature and the effect of radical scavenging agents were studied. Finally, recoverability and reusability of the vanadium supported on spinel cobalt ferrite nanoparticles were investigated. 相似文献
15.
16.
Synthesis of trisubstituted imidazoles was successfully accomplished using rare earth(III) perfluorooctanesulfonates (RE(OPf)3), RE = Sc, Y, La-Lu as catalysts in fluorous solvents. Ytterbium perfluorooctanesulfonates (Yb(OPf)3) catalyze the high efficient synthesis of trisubstituted imidazoles in fluorous solvents. By simple separation, fluorous phase containing only catalyst can be reused several times. 相似文献
17.
甲醛是室内装修污染的重要组分,已严重危害到人们身体健康,在室温条件下消除甲醛引起了人们的广泛兴趣.目前室温清除甲醛主要有物理吸附法、光催化法、等离子体技术及催化氧化技术.物理吸附法主要采用活性炭等作为吸附剂,其初期吸附效果较好,但当吸附饱和之后会重新释放甲醛造成二次污染;光催化法和等离子体技术需要特殊装置,不适合室内室温环境脱除甲醛;而催化氧化技术则可直接将甲醛转化为无毒无害的水和CO2,因而备受关注.Pt/TiO2被认为是目前消除甲醛最有效的催化剂.为进一步降低贵金属Pt的用量及增强其稳定性(Pt被氧化后其活性会降低),本文首次采用稀土La掺杂锐钛矿型TiO2,负载少量Pt后用于室内低浓度(0.5 ppm)甲醛的催化氧化.活性测试结果表明,纯TiO2催化剂上甲醛转化率在5%以下,有可能是物理吸附或可见光催化所致.负载0.5%Pt后,Pt/TiO2和Pt/La-TiO2甲醛转化率均高于80%,尤其是La掺杂活性高达96%以上,且在连续反应8 h甚至延长至40 h后其活性均未见下降趋势.电镜结果表明,La掺杂Pt/La-TiO2催化剂中Pt粒径从未掺杂的2.2 nm降至1.7 nm;CO程序升温脱附测试表明,Pt/La-TiO2/Pt的分散度达66%,而未掺杂样品仅为51%;X射线光电子能谱测试表明,Pt/La-TiO2的表面氧物种高于Pt/TiO2催化剂,说明La掺杂增强了Pt和载体间的相互作用.为探讨Pt/La-TiO2商业化应用前景,将粉体Pt/La-TiO2涂覆在堇青石蜂窝陶瓷上制备成整体催化剂.该整体催化剂在容积为2 m3的密室测试中5 min内即可将浓度为0.5 ppm的甲醛将至0.02 ppm以下.该催化剂在存放3个月后活性略有下降,但在10 min内仍可将甲醛浓度降至0.08 ppm,达到室内甲醛排放标准.综上,本文成功制备了La掺杂Pt/La-TiO2用于室内低浓度甲醛催化氧化,该催化剂表现出优异的催化性能.通过多种表征手段表明,La修饰后贵金属Pt纳米粒子尺寸减小、分散度提高及Pt与载体间相互作用增强是其活性优异的主要原因.以Pt/La-TiO2粉体制备的整体催化剂同样表现出了高的催化性能,具有工业应用前景. 相似文献
18.
In the presence of an easily prepared hydroxyapatite-supported gold catalyst, namely Au/HAP, various kinds of structurally diverse primary alcohols including benzylic and aliphatic ones, and amines involving aromatic and secondary ones could be converted into the corresponding amides in water with up to 99% yield. Meanwhile, on the basis of experimental observations and literatures, a plausible reaction pathway was described to elucidate the reaction mechanism. 相似文献
19.
An ionic liquid based on a cyclic guanidinium cation is an efficient medium for the selective oxidation of benzyl alcohols 总被引:1,自引:0,他引:1
A novel room temperature ionic liquid (RTIL) has been prepared containing a cyclic hexaalkylguanidinium cation. The selective oxidation of a series of substituted benzyl alcohols has been carried out in it, with sodium hypochlorite as the oxidant. The RTIL acts as both phase transfer catalyst (PTC) and solvent. The ionic liquid could be recycled after extraction of the benzaldehyde product with ether. 相似文献
20.
A polymer-supported gadolinium triflate (CMPS-IM-Gd) catalyst was prepared from chloromethyl polystyrene (CMPS) resin using a simple and convenient procedure. This polymeric catalyst was used as an efficient Lewis acid catalyst for the acetylation of various alcohols and phenols with acetic anhydride, affording high yields under mild conditions. The reaction was completed in a short period of time with small amounts of the catalyst. The catalyst was reused over 10 times without any significant loss of its catalytic activity. 相似文献