首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The complexes [Zn(methoxyacetate)21,10‐phenanthroline] 1 and [Zn2(phenylacetate)4(quinoline)2] 2 , were prepared and characterized by IR‐spectroscopy, UV–Visible spectroscopy, 1H and 13C NMR spectroscopy, single crystal X‐ray diffraction. BNPP hydrolysis of the complexes and their parent nitrogen ligands were scanned, the results indicated that the hydrolysis rates of BNPP were 4.5 × 104 and 6.2 × 105 for ( 1 ) and ( 2 ), respectively. In addition, anti‐bacterial activities were scanned to investigate the effect of complexation on their activity against Gram‐positive (S. epidermidis , S. aureus , E. faecalis , M. luteus and B. Subtilis ) and Gram‐negative (K. pneumonia , E. coli , P. Mirabilis and P. Aeruginosa ) bacteria using agar well‐diffusion method. Complex 1 showed high activity against Gand G + bacteria except against E. faecalis and P. Aeruginosa . Complex 2 did not show any activity against G or G + bacteria.  相似文献   

2.
Two new complexes: [Cu(TBZ)(bipy)Cl]Cl·H2O ( 1 ) and [Cu(TBZ)(phen)Cl]Cl·H2O ( 2 ) [TBZ=2‐(4′‐thiazolyl)‐ benzimidazole, phen=1,10‐phenanthroline and bipy=2,2′‐bipyridine] have been synthesized and characterized by elemental analysis, molar conductivity, IR, and UV‐vis methods. Complex 2 , structurally characterized by single‐crystal X‐ray crystallography, crystallizes in the monoclinic space group P21/c in a unit cell of a=0.85257(12) nm, b=2.5358(4) nm, c=1.15151(13) nm, β=118.721(8)°, V=2.183.2(5) nm3, Z=4, Dc=1.624 g·cm−3, µ=1.367 mm−1. The complexes, free ligands and chloride copper(II) salt were each tested for their ability to inhibit the growth of two gram‐positive (B. subtilis and S. aureus) and two gram‐negative (Salmonella and E. coli) bacteria. The complexes showed good antibacterial activities against the microorganisms. The interaction between the complexes and calf thymus DNA in aqueous solution was investigated adopting electronic absorption spectroscopy, fluorescence spectroscopy, viscosity measurements and cyclic voltammetry. Results suggest that the two complexes can bind to DNA by intercalative mode. In addition, the result of agarose gel electrophoresis suggested that the complexes can cleave the plasmid DNA at physiological pH and room temperature. Mechanistic studies with different inhibiting reagents reveal that hydroxyl radicals, and a singlet oxygen‐like copper‐oxo species are all involved in the DNA scission process mediated by the complexes.  相似文献   

3.
A series of cobalt(II) complexes containing tridentate 2‐pyrazolyl‐substituted 1,10‐phenanthroline ligands (L) with the general formula [LCoCl2] have been successfully synthesized and fully identified by IR spectroscopy, elemental analysis and mass spectroscopy. Cobalt complexes Co4–Co8 were further confirmed by X‐ray crystallographic analysis, and all the complexes adopted distorted trigonal pyramid geometries around the cobalt center. In combination with methylaluminoxane, the complexes exhibit high cis‐1,4‐selectivity for 1,3‐butadiene polymerization. The catalytic activities of the complexes mainly depend on the nature of the substituent and its position at the pyrazolyl ring of the ligand. Complexes having a bulkier substituent on the pyrazolyl ring of the ligand show lower catalytic activity and the incorporation of electron‐withdrawing substituent enhances the activity. Polymerization behaviors were almost not affected with varying [Al]/[Co] ratio, but both activity and the cis‐1,4 content decrease slightly as polymerization temperature increasing. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
Three η4‐(C=C–C=O) coordination cobalt(I) complexes 1 – 3 were synthesized by the reactions of cinnamaldehyde, p‐fluorocinnamaldehyde, and p‐chlorocinnamaldehyde with CoMe(PMe3)4. Complex 4 as η2‐(C=C) coordination was prepared by the reaction of chalcone with Co(PMe3)4. The structures of complexes 1 – 4 were confirmed by single‐crystal X‐ray diffraction. Although the reactions didn't undergo C–H bond activation and decarbonylation, the formation of complexes 1 – 4 deepens our understanding of the reactions between α,β‐unsaturated aldehyde or ketone with low‐valent central cobalt atom.  相似文献   

5.
Two cobalt complexes, [Co3(L)2(CH3OH)23‐OH)2] ( 1 ) and [Co(L)(bpe)0.5] · H2O ( 2 ) [H2L = 5‐(4‐carboxyphenoxy)‐pyridine‐2‐carboxylic acid; bpe = 1, 2‐bis(4‐pyridyl)ethylene] were synthesized and fully characterized by elemental analyses, IR spectroscopy, single‐crystal X‐ray diffraction, thermogravimetric analysis (TGA), and magnetic analysis. Complex 1 has a two‐dimensional (2D) structure with puckered Co–O–Co chains, and 2 displays a three‐dimensional (3D) network containing one‐dimensional rectangular channels with dimensions of 9.24 × 13.84 Å. In complex 1 , variable‐temperature magnetic susceptibility measurements indicate antiferromagnetic interactions between cobalt magnetic centers.  相似文献   

6.
A series of new benzimidazolium salts as N‐heterocyclic carbene (NHC) precursors has been synthesized. Reactions of these salts with Ag2O with varying metal‐to‐salt ratio facilitate the formation of a series of new binuclear and mononuclear Ag(I)–NHC complexes. All compounds were characterized using physicochemical and spectroscopic techniques. Single‐crystal X‐ray diffraction study reveals a binuclear structure for one of the complexes and a mononuclear one for two others. These complexes exist as cationic Ag(I)–NHC complexes with the chelation of carbene carbons to the silver centre in an almost linear manner. The compounds were screened for their anti‐bacterial activities against Staphylococcus aureus (ATCC 12600) as a Gram‐positive bacterium and Escherichia coli (ATCC 25922) as a Gram‐negative bacterium. The results show that both bacteria appear markedly inhibited. Furthermore, the results suggest the possibility of steric variation as a modulation of the anti‐bacterial activities. The nuclease activities of the compounds were assessed using gel electrophoresis and the results indicate that these complexes can cleave or degrade DNA and RNA via a non‐oxidative mechanism. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
In coordination chemistry and crystal engineering, many factors influence the construction of coordination polymers and the final frameworks depend greatly on the organic ligands used. The diverse coordination modes of N‐donor ligands have been employed to assemble metal–organic frameworks. Carboxylic acid ligands can deprotonate completely or partially when bonding to metal ions and can also act as donors or acceptors of hydrogen bonds; they are thus good candidates for the construction of supramolecular architectures. We synthesized under reflux or hydrothermal conditions two new alkaline earth(II) complexes, namely poly[(1,10‐phenanthroline‐κ2N,N′)bis(μ‐3‐phenylprop‐2‐enoato‐κ3O,O′:O)calcium(II)], [Ca(C10H7O2)2(C10H8N2)]n, (1), and poly[(1,10‐phenanthroline‐κ2N,N′)(μ3‐3‐phenylprop‐2‐enoato‐κ4O:O,O′:O′)(μ‐3‐phenylprop‐2‐enoato‐κ3O,O′:O)barium(II)], [Ba(C10H7O2)2(C10H8N2)]n, (2), and characterized them by FT–IR and UV–Vis spectroscopies, thermogravimetric analysis (TGA) and single‐crystal X‐ray diffraction analysis, as well as by powder X‐ray diffraction (PXRD) analysis. Complex (1) features a chain topology of type 2,4 C4, where the Ca atoms are connected by O and N atoms, forming a distorted bicapped trigonal prismatic geometry. Complex (2) displays chains of topology type 2,3,5 C4, where the Ba atom is nine‐coordinated by seven O atoms of bridging/chelating carboxylate groups from two cinnamate ligands and by two N atoms from one phenanthroline ligand, forming a distorted tricapped prismatic arrangement. Weak C—H…O hydrogen bonds and π–π stacking interactions between phenanthroline ligands are responsible to the formation of a supramolecular three‐dimensional network. The thermal decompositions of (1) and (2) in the temperature range 297–1173 K revealed that they both decompose in three steps and transform to the corresponding metal oxide.  相似文献   

8.
Two novel complexes [Cu L 2(MeOH)] ( 1 )and [Ag2 L (H L )2(MeOH)] ( 2 ) ( L = 5‐methyl‐1‐(4‐methylphenyl)‐1,2,3‐triazol‐4‐carboxylic acid) were synthesized and characterized by elemental analysis, IR and X‐ray diffraction. Complex 1 is a mononuclear structure; the molecules were assembled into an infinite 2–D supramolecular by the C–H···O weak interactions. Complex 2 is a centrosymmetric dinuclear structure with bis(unidentate) carboxylato co‐ordination mode, and the molecules were assembled into 2–D layers by C–H···O and O–H···O weak interactions.  相似文献   

9.
Novel Zn(II) complexes with the general formula: [Zn(furo)2(L)n], n = 1 or 2, (furo = furosemide = (4‐chloro‐2‐(furan‐2‐ylmethylamino)‐5‐sulfamoylbenzoic acid) were prepared. The complexes [Zn(furo)2(MeOH)2] ( 1 ; MeOH = methanol), [Zn(furo)2(2‐ampy)2] ( 2 ; 2‐ampy = 2‐aminopyridine), [Zn(furo)2(2‐ammepy)2] ( 3 ; 2‐ammepy = 2‐aminomethylpyridine), [Zn(furo)2(H2O)(2,2‐bipy)] ( 4 ; 2,2′‐bipy = 2,2′‐bipyridine), [Zn(furo)2(H2O)(4,4′‐bipy)] ( 5 ; 4,4′‐bipy = 4,4′‐bipyridine), [Zn(furo)2(1,10‐phen)] ( 6 ; 1,10‐phen = 1,10‐phenanthroline), [Zn(furo)2(2,9‐dmp)] ( 7 ; 2,9‐dmp = 2,9‐dimethyl‐1,10‐phenanthroline), and [Zn (furo)2(quin)2] ( 8 ; quin = quinoline) were synthesized and characterized using different techniques such as IR, UV–Vis, 1H NMR, 13C NMR, LC/MS and others. The crystal structure of complex ( 4 ) was determined using single‐crystal X‐ray diffraction. The anti‐bacterial activity of complexes ( 1 – 8 ) was tested using agar diffusion method against three gram‐positive (Staphylococcus aureus, Bacillus subtilis and Staphylococcus epidermidis) and three gram‐negative bacteria (Escherichia coli, Proteus mirabilis, Pseudomonas aeruginosa). The obtained results showed different Inhibition Zone Diameters (IZD) with various anti‐bacterial activities against the selected gram‐positive and gram‐negative bacteria. In addition, the rate of bis‐(4‐nitrophenyl) phosphate hydrolysis was measured at different temperatures, different pH values and different concentrations. The rates for the eight complexes were in the following order: complex 4 > 2 > 5 > 8  >  7  >  6  >  3  >  1 .  相似文献   

10.
A series of Ag(I) complexes ( 6 , 7 , 8 , 9 ) derived from imidazol‐2‐ylidenes was synthesized by reacting Ag2O with an o‐, m‐, p‐xylyl or 1,3,5‐triazine‐linked imidazolium salts ( 1 , 2 , 3 , 4 ) and then characterizing these using various spectro‐analytical techniques. Additionally, triazine‐linked bis‐imidazolium salt 5 was characterized using the single‐crystal X‐ray diffraction method. Complexes 6–9 were formed from the N‐heterocyclic carbene ligand precursors 1–3 as PF6 salts in good yields. Conversely, salt 5 does not form Ag(I) complex even under various reaction conditions. Using ampicillin as a standard, complexes 6–9 were tested against bacteria strains Escherichia coli and Staphylococcus aureus as Gram‐negative and Gram‐positive bacteria, respectively, showing potent antimicrobial activities against the tested bacteria even at minimum inhibition concentration and bacterial concentration levels. Furthermore, the potential anticancer activities of the reported complexes were evaluated against the human colorectal cancer (HCT 116) cell lines, using 5‐fluorouracil as a standard drug. The highest anticancer activities were observed for complex 8 with an IC50 value of 3.4 μm , whereas the lowest was observed for complex 9 with an IC50 value of 18.1 μm . Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
Reaction of N,N′‐(cyclohexane‐1,2‐diylidene)bis(4‐fluorobenzohydrazide), C20H18F2N4O2, ( LF ), with zinc chloride and mercury(II) chloride produced different types and shapes of neutral coordination complexes, namely, dichlorido[N,N′‐(cyclohexane‐1,2‐diylidene)bis(4‐fluorobenzohydrazide)‐κ2N,O]zinc(II), [ZnCl2(C20H18F2N4O2)], ( 1 ), and dichlorido[N,N′‐(cyclohexane‐1,2‐diylidene)bis(4‐fluorobenzohydrazide)‐κ4O,N,N′,O′]mercury(II), [HgCl2(C20H18F2N4O2)], ( 2 ). The organic ligand and its metal complexes are characterized using various techniques: IR, UV–Vis and nuclear magnetic resonance (NMR) spectroscopies, in addition to powder X‐ray diffraction (PXRD), single‐crystal X‐ray crystallography and microelemental analysis. Depending upon the data from these analyses and measurements, a typical tetrahedral geometry was confirmed for zinc complex ( 1 ), in which the ZnII atom is located outside the bis(benzhydrazone) core. The HgII atom in ( 2 ) is found within the core and has a common octahedral structure. The in vitro antibacterial activities of the prepared compounds were evaluated against two different bacterial strains, i.e. gram positive Bacillus subtilis and gram negative Pseudomonas aeruginosa bacteria. The prepared compounds exhibited differentiated growth‐inhibitory activities against these two bacterial strains based on the difference in their lipophilic nature and structural features.  相似文献   

12.
Three new compounds based on H2BDC and PyBImE [H2BDC = 1,4‐benzenedicarboxylatic acid, PyBImE = 2‐(2‐pyridin‐4‐yl‐vinyl)benzimidazole], namely, [Co(PyBImE)(BDC)(H2O)2] ( 1 ), [Co(PyBImE)2(HBDC)(BDC)0.5] ( 2 ), and [(HPyBImE)+ · (BDC)20.5 · (H2BDC)0.5] ( 3 ), were synthesized by hydrothermal methods and characterized by single‐crystal X‐ray diffraction. Compound 1 is a one‐dimensional chain bridged by terephthalate in a bis(monodentate) fashion. In the complex the nitrogen atom from NBIm and the coordination water molecule complete the coordination sphere. In complex 2 , the dinuclear cobalt units are bridged by terephthalate in a bis(bidentate) fashion into a one‐dimensional chain, but different from complex 1 , the nitrogen atom from NPy and the oxygen atom from hydrogenterephthalate complete the coordination sphere. Complex 3 is a co‐crystal with PyBImE and H2BDC in a 1:1 ratio and the transfer of hydrogen atoms leads the complex into a salt. Interesting supramolecular structures are shown due to the hydrogen bonding as well as π ··· π interactions in the three complexes. Thermal and magnetic properties of 1 and 2 were also studied.  相似文献   

13.
Three ternary rare earth [NdIII ( 1 ), SmIII ( 2 ) and YIII ( 3 )] complexes based on 3‐[(4,6‐dimethyl‐2‐pyrimidinyl)thio]‐propanoic acid (HL) and 1,10‐phenanthroline (Phen) were synthesized and characterized by IR and UV/Vis spectroscopy, TGA, and single‐crystal X‐ray diffraction. The crystal structures showed that complexes 1 – 3 contain dinuclear rare earth units bridged by four propionate groups and are of general formula [REL3(Phen)]2 · nH2O (for 1 and 2 : n = 2; for 3 : n = 0). All rare earth ions are nine‐coordinate with distorted mono‐capped square antiprismatic coordination polyhedra. Complex 1 crystallizes in the monoclinic system, space group P21/c with a = 16.241(7) Å, b = 16.095(7) Å, c = 19.169(6) Å, β = 121.48(2)°. Complex 2 crystallizes in the monoclinic system, space group P21/c with a = 16.187(5) Å, b = 16.045(4) Å, c = 19.001(4) Å, β = 120.956(18)°. Complex 3 crystallizes in the triclinic system, space group P1 with a = 11.390(6) Å, b = 13.636(6) Å, c = 15.958(7) Å, α = 72.310(17)°, β = 77.548(15)°, γ = 78.288(16)°. The antioxidant activity test shows that all complexes own higher antioxidant activity than free ligands.  相似文献   

14.
Two monomeric cobalt(Ⅱ)complexes,[CoL(N3)] ClO4(1)and CoL(N3)2(2),where L is tris((3,5-dimethylpyrazol-1-yl)methyl)amine,were synthesized and their crystal structures were determined by X-ray diffraction technique.Complex 1 is five coordinated with one azide nitrogen atom and four nitrogen atoms of the tris((3,5-dimethylpyrazol-l-yl)-methyl)amine ligand,and the metal center is in distorted trigonal bipyramidal environment.Complex 2 is six coordinated distorted octahedron with the two azide nitrogen atoms and four nitrogen donors of the tris((3,5-dimethylpyrazol-1-yl)-methyl)amine ligand.The solution behaviors of the title complexes have been further investigated by UV-Vis,and 1H NMR analysis.It is found that the formation of 1 and 2 depends on the molar ratio of the azide ion to metal salt and ligand Complex 1 attached with one azide group is more stable and easy to generate than complex 2 incorporated with two azide groups,and the reasons were well discussed.  相似文献   

15.
The title compound, [CoCl(C12H8N2)2(H2O)]Cl·[CoCl2(C12H8N2)2]·6H2O, is the first example of a new 1:1 cocrystal of the octahedral [CoCl2(phen)2] and [CoCl(phen)2(H2O)]+·Cl complexes (phen is 1,10‐phenanthroline). The latter form heterochiral dimers held by strong π–π stacking interactions via their phenathroline ligands, which confirms that π stacking is an important and reliable synthon in supramolecular design. In addition, the crystal structure is networked by H2O...H2O, H2O...Cl and H2O...Cl hydrogen bonds, which interconnect the different units of the cobalt complexes.  相似文献   

16.
A series of 1,2‐bis(arylimino)acenaphthylenes ( L1 – L5 ) was synthesized and reacted with CoCl2 to afford the corresponding cobalt complexes LCoCl2 ( C1 – C5 ). All cobalt complexes have been fully characterized and in the case of C1 by single crystal X‐ray diffraction; its molecular structure reveals a distorted tetrahedral geometry. On activation with AlEtCl2, C1 – C5 efficiently polymerize isoprene to give polyisoprenes (PIs) with high contents of cis‐1,4 units (between 90% and 94%). The influence of reaction temperature and [Al]/[Co] molar ratio on both catalytic performance and the microstructural properties of the PIs is investigated. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3609–3615.  相似文献   

17.
Cyclam derivatives and their metal complexes have been found to exhibit an anti‐HIV effect and stimulate the activity of stem cells from bone marrow. The strength of their binding to the CXCR4 receptor correlates with anti‐HIV and stem‐cell activities. Knowledge of the conformation and crystal packing of various macrocyclic metal complexes has become important in developing new effective anti‐HIV drugs. The synthesis and preparation of single crystals of a new Cu2+‐doped macrocyclic compound, (3,14‐diethyl‐2,6,13,17‐tetraazatricyclo[16.4.0.07,12]docosane)copper(II) bis(perchlorate)–3,14‐diethyl‐2,13‐diaza‐6,17‐diazoniatricyclo[16.4.0.07,12]docosane bis(perchlorate) (0.69/0.31), {[Cu(C22H44N4)](ClO4)2}0.69·(C22H46N42+·2ClO4?)0.31, is reported. Characterization by X‐ray diffraction analysis shows that the asymmetric unit contains half of a centrosymmetric molecule. The macrocyclic ligand in the compound adopts the most stable trans‐III conformation. The Cu—N distances of 2.015 (3) and 2.047 (3) Å are normal, but the long axial Cu—O bond of 2.795 (3) Å may be due to a combination of the Jahn–Teller effect and the strong in‐plane ligand field. The crystal structure is stabilized by hydrogen bonding between secondary N—H groups, the N atoms of the macrocycle and the O atoms of the perchlorate anions. Hirshfeld surface analysis with 2D (two‐dimensional) fingerprint plots indicates that the main contributions to the crystal packing are from H…H (58.0%) and H…O/O…H (41.9%) interactions. Electron paramagnetic resonance (EPR) properties are also described.  相似文献   

18.
New binary and ternary copper(II) complexes, [Cu(py‐phen)2(NO3)]NO3 ( 1 ), [Cu2(py‐phen)2(gly)2(NO3)2(H2O)2]?3H2O ( 2 ) and [Cu2(py‐phen)2(tyr)2(H2O)2](NO3)2?3H2O ( 3 ) (py‐phen: pyrazino[2,3‐f][1,10]phenanthroline; gly: glycine; tyr: tyrosine), have been synthesized and characterized using CHN analysis, electrospray ionization mass spectrometry, Fourier transform infrared spectroscopy and single‐crystal X‐ray diffraction. Interaction of these complexes with calf thymus DNA has been investigated using absorption spectral titration, ethidium bromide and Hoechst 33258 displacement assay and thermal denaturation measurements. These complexes were found to be efficient cleaving agents and cleavage reactions were mediated by hydrolytic and oxidative pathways. The interaction between these complexes and bovine serum albumin (BSA) was investigated using electronic absorption and fluorescence spectroscopy. The experimental results show that the fluorescence quenching mechanism of these complexes and BSA is a static quenching process. Furthermore, in vitro cytotoxicities of these complexes against tumour cell lines (Caco‐2, MCF‐7 and A549) and healthy cell line (BEAS‐2B) showed that they exhibited anticancer activity with low IC50 values. These complexes were markedly active against the cell lines and can be good drug candidates that are effective and safe for healthy tissue.  相似文献   

19.
Two complexes [MnIII4(naphthsao)4(naphthsaoH)4] ( 1 ) and [FeIII6O2(naphthsao)4(O2CPh)6] ( 2 ) [naphthsao = 1‐(1‐hydroxy‐naphthalen‐2‐yl)ethanone oxime] were obtained through the reactions of naphthsao ligand and MnCl2 · 4H2O or FeCl3 · 6H2O in the presence of triethylamine (Et3N). Their structures were determined by X‐ray single crystal diffraction, elemental analysis, and IR spectra. Complex 1 displays 12‐MC‐4 metallacrown structural type with cube‐like configuration and 2 shows an offset stacked 10‐MC‐3 structural type with the ring connectivity containing Fe–O–C–O–Fe–O–N–Fe–O–N. Magnetic susceptibility measurement reveals the ferromagnetic interactions and field‐induced slow relaxation of the magnetization for 1 , whereas out‐of‐phase signal is not observed for 2 .  相似文献   

20.
A series of mononuclear metal complexes of Co(III), Ni(II) and Cu(II) with 2‐(2,4‐dichlorobenzamido)‐N′‐(3,5‐di‐tert‐butyl‐2‐hydroxybenzylidene)benzohydrazide ( LH 3 ) have been synthesized and characterized using various physico‐chemical, spectroscopic and single crystal X‐ray diffraction techniques. Structural studies of [Co( LH )( LH 2 )]·H2O ( 4 ) revealed the presence of both amido and imidol tautomeric forms of LH 3 , resulting in a distorted octahedral geometry around the Co(III) ion. [Ni( LH )(H2O)]·H2O ( 5 ) and [Cu( LH )(H2O)]·H2O ( 6 ) are isomorphous structures and crystallize in the monoclinic P21/c space group. The crystal structures of 4 , 5 and 6 are stabilized by hydrogen bonds formed by the enclathrated water molecules, C‐H···π and π···π interactions. Complexes along with the ligand ( LH 3 ) were screened for their in vivo anti‐inflammatory activity (carrageenan‐induced rat paw edema method) and in vitro antioxidant activity (DPPH free radical scavenging assay). Metal complexes have shown significant anti‐inflammatory and antioxidant potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号