首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel macrocyclic tetradentate ligand 1,5,8,12-tetraaza-2,4,9,11-tetraphenyl-6,7:13,14-dibenzocyclohexadeca- 1,4,8,11-tetraene (L) has been synthesized. Cobalt(II), nickel(II), and copper(II) complexes of this ligand have been prepared and characterized by elemental analysis, molar conductance measurements, magnetic susceptibitity measurements, and mass, IR, electronic, and ESR spectral studies. The molar conductance measurements correspond to a nonelectrolytic nature for all the complexes, which can be formulated as [M(L)X2] (where M = Co(II), Ni(II), and Cu(II); X = Cl and NO3). On the basis of IR, electronic, and ESR spectral studies, an octahedral geometry has been assigned to the Co(II) and Ni(II) complexes, whereas a tetragonal geometry was found for the Cu(II) complexes. The investigated compounds and uncomplexed metal salts and the ligands were tested against bacterial species like Sarcina lutea, Escherchia coli, and Staphylococcus aureus. The metal complexes have higher activity than the free ligand and metal salts. The text was submitted by the authors in English.  相似文献   

2.
Manganese(II), cobalt(II), nickel(II) and copper(II) complexes have been synthesized with a new tetradentate ligand viz. 1,3,7,9-tetraaza-2,4,8,10-tetraketo-6,12-diphenyl-cyclododecane (L) and characterized by the elemental analysis, molar conductance measurements, magnetic susceptibility measurements, mass, 1H NMR, IR, electronic and EPR spectral studies. The molar conductance measurements of the complexes in DMF correspond to be nonelectrolytic nature for Mn(II), Co(II) and Cu(II) while 1:2 electrolytes for Ni(II) complexes. Thus, these complexes may be formulated as [M(L)X2] and [Ni(L)]X2 (where M = Mn(II), Co(II) and Cu(II) and X = Cl and NO3).On the basis of IR, electronic and EPR spectral studies an octahedral geometry has been assigned for Mn(II) and Co(II) complexes, square-planar for Ni(II) whereas tetragonal for Cu(II) complexes. The ligand and its complexes were also evaluated against the growth of bacteria and pathogenic fungi in vitro.  相似文献   

3.
A new azo dye ligand of sulfaguanidine with 5‐nitro‐8‐hydroxyquinoline and its Mn(II), Ni(II), Co(II) and Cu(II) complexes were synthesized and characterized using elemental analysis, inductively coupled plasma, molar conductance, X‐ray powder diffraction, thermogravimetric analysis, magnetic moment measurements, and infrared, 1H NMR, electron impact mass and UV–visible spectral studies. The spectral studies and analytical data revealed that the azo dye ligand acts as a monobasic bidentate ligand via deprotonated OH and nitrogen atom of the azo group. The data support the mononuclear formulation of all complexes, except Cu(II) complex that has a binuclear formulation with a 1:2 metal to ligand ratio. The complexes have tetrahedral structure except Ni(II) which has octahedral geometry. The molar conductance data reveal that all the metal complexes are non‐electrolytic in nature The average particle size of the ligand and its Mn(II), Ni(II), Co(II) and Cu(II) complexes is 0.12–0.91 nm. The effect of these compounds for improvement of chemical durability of silicate glass in 0.1 M HCl was studied. Window and soda‐lime silica glass were taken as samples for the durability experiments. The inhibition efficiency of the ligand and its complexes for corrosion of glass surfaces after dissolution experiments was evaluated quantitatively using the specific weight loss method and qualitatively using scanning electron microscopy. The inhibition efficiencies of the tested compounds follow the order Co(II) complex > Mn(II) complex > Ni(II) complex > H3L > Cu(II) complex. The chemical durability improvement is 88.12–56.25% and 87.99–51.96% for window and soda‐lime silica glass, respectively. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
A new series of transition metal complexes of Cu(II), Ni(II), Co(II), Mn(II), Zn(II), VO(IV), Hg(II) and Cd(II) have been synthesized from the Schiff base (L) derived from 4-aminoantipyrine, 3-hydroxy-4-nitrobenzaldehyde and o-phenylenediamine. Structural features were obtained from their elemental analyses, magnetic susceptibility, molar conductance, mass, IR, UV-Vis, 1H NMR and ESR spectral studies. The data show that these complexes have composition of ML type. The UV-Vis, magnetic susceptibility and ESR spectral data of the complexes suggest a square-planar geometry around the central metal ion except VO(IV) complex which has square-pyramidal geometry. The redox behaviour of copper and vanadyl complexes was studied by cyclic voltammetry. Antimicrobial screening tests gave good results in the presence of metal ion in the ligand system. The nuclease activity of the above metal complexes shows that Cu, Ni and Co complexes cleave DNA through redox chemistry whereas other complexes are not effective.  相似文献   

5.
Cu(II), Co(II), Ni(II), Cd(II), and Zn(II) complexes of 6-(2-phenyldiazenyl)-7-hydroxy-4-methyl coumarin (PAHC) are characterized based on elemental analyses, infrared, 1H NMR, magnetic moment, molar conductance, mass spectra, UV-Vis analysis, thermogravimetric analysis (TGA), and X-ray powder diffraction. From the elemental analyses, it is found that the complexes have formulae [M(L)2(H2O) n ] ? xH2O (where M = Cu(II), Co(II), Ni(II), Cd(II), and Zn(II), n = 0–2, x = 1–4). The molar conductance data reveal that all the metal chelates are non-electrolytes. From the magnetic and solid reflectance spectra, it is found that the structures of these complexes are octahedral or tetrahedral. The synthesized ligand and metal complexes were screened for antibacterial activity against some Gram-positive and Gram-negative bacteria.  相似文献   

6.
Mn(II), Co(II), Ni(II), and Cu(II) complexes have been synthesized with benzil bis(thiosemicarbazone) (L) and characterized by elemental analyses, molar conductance measurements, magnetic susceptibility measurements, thermogravimetric studies, infrared (IR), electronic, and electron paramagnetic resonance (eEPR) spectral studies. The molar conductance measurements of the complexes in DMF correspond to the non-electrolytic nature of the complexes. Thus these complexes may be formulated as [M(L)X2] (where M = Mn(II), Co(II), Ni(II), Cu(II) and X = Cl? and NO3 ?). On the basis of IR, electronic, and EPR spectral studies, an octahedral geometry has been assigned for Mn(II), Co(II), and Ni(II) complexes, whereas a tetragonal geometry for the Cu(II) complexes is presumed. The free ligand and its metal complexes were tested against the phytopathogenic fungi (i.e., Rhizoctonia baticola, Alternaria alternata) in vitro.  相似文献   

7.
Co(II), Ni(II) and Cu(II) chloro complexes of benzilic hydrazide (BH) have been synthesized. Also, reaction of the ligand (BH) with several copper(II) salts, including NO3 ?, AcO?, and SO4 ? afforded metal complexes of the general formula [CuLX(H2O) n nH2O, where X is the anion and n = 0, 1 or 2. The newly synthesized complexes were characterized by elemental analysis, mass spectra, molar conductance, UV–vis, IR spectra, magnetic moment, and thermal analysis (TG/DTG). The physico-chemical studies support that the ligand acts as monobasic bidentate towards metal ion through the carbonyl and hydroxyl oxygen atoms. The spectral data revealed that the geometrical structure of the complexes is square planar for Cu (II) complexes and tetrahedral for Co(II) and Ni(II) complexes. Structural parameters of the ligand and its complexes have been calculated. The ligand and its metal complexes are screened for their antimicrobial activity. The catalytic activities of the metal chelates have been studied towards the oxidative decolorization of AB25, IC and AB92 dyes using H2O2. The catalytic activity is strongly dependent on the type of the metal ion and the anion of Cu(II) complexes.  相似文献   

8.
The azo dye ligand 4‐(5‐chloro‐2‐hydroxyphenylazo)‐N‐thiazol‐2‐ylbenzenesulfonamide (H2L) formed by the coupling reaction of sulfathiazole and p‐chlorophenol was synthesized and characterized using elemental analysis and Fourier transform infrared (FT‐IR) as well as UV–visible spectra. Nano‐sized divalent Cu, Co, Ni, Mn and Zn complexes of the synthesized azo dye ligand were prepared and investigated using various spectroscopic and analytical techniques. Elemental and thermal analyses indicated the formation of the Cu(II), Ni(II) and Mn(II) complexes in a molar ratio of 1:2 (L:M) while Co(II) and Zn(II) complexes exhibited a 1:1 (M:L) ratio. FT‐IR spectral studies confirmed the coordination of the ligand to the metal ions through the phenolic hydroxyl oxygen, azo nitrogen, sulfonamide oxygen and/or thiazole nitrogen. The geometric arrangements around the central metal ions were investigated applying UV–visible and electron spin resonance spectra, thermogravimetric analysis and molar conductance measurements. X‐ray diffraction patterns revealed crystalline nature of H2L and amorphous nature of all synthesized complexes. Transmission electron microscopy images confirmed nano‐sized particles and their homogeneous distribution over the complex surface. Antibacterial, antifungal and antitumour activities of the investigated complexes were screened compared with familiar standard drugs to confirm their potential therapeutic applications. The Cu(II) complex showed IC50 of 3.47 μg ml?1 (5.53 μM) against hepatocellular carcinoma cells, which means that it is a more potent anticancer drug compared with the standard cisplatin (IC50 = 3.67 μg ml?1 (12.23 μM)). Furthermore, the Co(II), Ni(II), Cu(II) and Zn(II) complexes displayed IC50 greater than that of an applied standard anticancer agent (5‐flurouracil) towards breast carcinoma cells. Hence, these complexes can be considered as promising anticancer drugs. The mode of binding of the complexes with salmon serum DNA was determined through electronic absorption titration and viscosity studies.  相似文献   

9.
Manganese(II), cobalt(II), nickel(II) and copper(II) complexes with 1,5,11,15-tetraaza-21,22-dioxo-tricyclo [19,3,1,I6,10]-5,10,15-20-dicosatetraene (L), as a new macrocyclicligand, have been synthesized with and characterized by elemental analysis, molar conductance measurements, magnetic susceptibility measurements, mass, IR, electronic and EPR spectral studies. The molar conductance measurements of the complexes in DMF correspond to non-electrolytic nature of Mn(II), Co(II) and Cu(II) complexes, while showing a 1:2 electrolyte for thew Ni(II) complexe. Thus, these complexes may be formulated as [M(L)X2] and [Ni(L)]X2 (where M = Mn(II), Co(II) and Cu(II) and X = Cl- and NO3 -). On the basis of IR, electronic and EPR spectral studies, an octahedral geometry has been assigned for Mn(II) and Co(II), a square planar for Ni(II) and tetragonal for Cu(II) complexes. In vitro ligand and its metal complexes were also screened against the growth of some fungal and bacterial species in order to assess their antimicrobial properties.  相似文献   

10.
A novel diazadiphosphetidine ligand derived from the reaction of 2,4‐dichloro‐1,3‐dimethyl‐1,3,2,4‐diazadiphosphetidine‐2,4‐dioxide and 2,2′‐(ethane‐1,2‐diylbis[oxy])bis(ethan‐1‐amine) and its Ni(II), Cu(II), and Co(II) complexes have been synthesized, characterized by spectroscopic, elemental analyses, magnetic susceptibility, and conductivity methods, and screened for antimicrobial, DNA binding, and cleavage properties. Spectroscopic analysis and elemental analyses indicate the formula [M(H2L)Cl2] for the Cu(II), Co(II), Ni(II), and Zn(II) complexes and octahedral geometry for all the complexes. The non‐electrolytic nature of the complexes in dimethyl sulfoxide (DMSO) was confirmed by their molar conductance values, which are in the range 12.32–6.73 Ω?1 cm2 mol?1. Computational studies have been carried out at the density functional theory (DFT)‐B3LYP/6‐31G(d) level of theory on the structural and spectroscopic properties of diazadiphosphetidine H2L and its binuclear Cu(II), Co(II), Ni(II), and Zn(II) complexes. Six tautomers and geometrical isomers of the diazadiphosphetidine ligand were confirmed using semiempirical AM1 and DFT method from DMOL3 calculations. The copper complex had the best antibacterial activity against Staphylococcus aureus (ATCC 29213). DNA cleavage activities of the compounds, evaluated on pBR322 DNA by agarose gel electrophoresis in the presence and absence of an oxidant (H2O2) and a free‐radical scavenger (DMSO), indicated no activity for the ligand and moderate activity for the complexes, with the copper complex cleaving pBR322 DNA more efficiently in the presence of H2O2.  相似文献   

11.
A series of the macrocyclic complexes is synthesized by condensation of acetonylacetone and thiocarbohydrazide in the presence of divalent metal salts in the methanolic medium. The complexes are of the type: [M(TML)X2] where, M = Co(II), Ni(II), Cu(II), Zn(II) and Cd(II); X = Cl CH3COO and TML is a tetradentate macrocyclic ligand. The complexes have been characterized with the help of various physicochemical techniques like elemental analyses, conductance measurements, magnetic measurements, NMR, infrared and electronic spectral studies. The low value of molar conductance indicates them to be non-electrolyte. On the basis of various studies a distorted octahedral geometry may be proposed for all the complexes. All the synthesized metal complexes were also tested for their in vitro antibacterial activities against some bacterial strains. The results obtained were compared with standard antibiotic: Ciprofloxacin. Some of the tested complexes shows good antibacterial activities against some bacterial strains.  相似文献   

12.
Co(II), Ni(II), Cu(II) and Zn(II) Schiff base complexes derived from 3-hydrazinoquionoxaline-2-one and 1,2-diphenylethane-1,2-dione were synthesized. The compounds were characterized by elemental analyses, molar conductance, magnetic susceptibility measurements, FTIR, UV–vis, 1H NMR, 13C NMR, ESR, and mass spectral studies. Thermal studies of the ligand and its metal complexes were also carried out to determine their thermal stability. Octahedral geometry has been assigned for Co(II), Ni(II), and Zn(II) complexes, while Cu(II) complex has distorted octahedral geometry. Powder XRD study was carried out to determine the grain size of ligand and its metal complexes. The electrochemical behavior of the synthesized compounds was investigated by cyclic voltammetry. For all complexes, a 2 : 1 ligand-to-metal ratio is observed. The ligand and its metal complexes were screened for their activity against bacterial species such as E. coli, P. aeruginosa, and S. aureus and fungal species such as A. niger, C. albicans, and A. flavus by disk diffusion method. The DNA-binding of the ligand and its metal complexes were investigated by electronic absorption titration and viscosity measurement studies. Agarose gel electrophoresis was employed to determine the DNA-cleavage activity of the synthesized compounds. Density functional theory was used to optimize the structure of the ligand and its Zn(II) complex.  相似文献   

13.
Coordination compounds of Mn (II), Fe (III), Co (II), Ni (II), Cu (II) and Cd (II) ions were synthesized from reaction with Schiff base ligand 4,6‐bis((E)‐(2‐(pyridin‐2‐yl)ethylidene)amino)pyrimidine‐2‐thiol (HL) derived from the condensation of 4,6‐diaminopyrimidine‐2‐thiol and 2‐(pyridin‐2‐yl)acetaldehyde. Microanalytical data, magnetic susceptibility, infrared and 1H NMR spectroscopies, mass spectrometry, molar conductance, powder X‐ray diffraction and thermal decomposition measurements were used to determine the structure of the prepared complexes. It was found that the coordination between metal ions and bis‐Schiff base ligand was in a molar ratio of 1:1, with formula [M (HL)(H2O)2] Xn (M = Mn (II), Co (II), Ni (II), Cu (II) and Cd (II), n = 2; Fe (III), n = 3). Diffuse reflectance spectra and magnetic susceptibility measurements suggested an octahedral geometry for the complexes. The coordination between bis‐Schiff base ligand and metal ions was through NNNN donor sites in a tetradentate manner. After preparation of the complexes, biological studies were conducted using Gram‐positive (B. subtilis and S. aureus) and Gram‐negative (E. coli and P. aeruginosa) organisms. Metal complexes and ligand displayed acceptable microbial activity against both types of bacteria.  相似文献   

14.
Some new metal(II) complexes, ML2[M = Co, Ni, Cu and Zn], of 2-acetylthiophene benzoylhydrazone ligand (HL) containing a trifunctional SNO-donor system have been synthesized and characterized on the basis of physicochemical data by elemental analysis, magnetic moment, molar conductance, thermogravimetric and spectroscopic (electronic, IR, 1H NMR and 13C NMR) data. The ligand functions as monobasic SNO tridentates where the deprotonated enolic form is preferred in the coordination producing distorted octahedral complexes.  相似文献   

15.
The semicarbazone (L1) has been prepared by reaction of semicarbazide and glutaraldehyde (2 : 1) in distilled water and methanol (1 : 1). The reaction of semicarbazide, glutaraldehyde and diethyl oxalate in distilled water and methanol gave Schiff-base L2, 1,2,4,7,9,10-hexaazacyclo-pentadeca-10,15-dien-3,5,6,8-tetraone. Complexes of first row transition metal ions Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) have also been synthesized. The ligand and its complexes were characterized by elemental analysis, molar conductance, magnetic moment measurements, IR, 1H NMR, UV–Visible spectra and thermogravimetric analysis (TGA). Molar conductance values show that the complexes of Ni(II), Cu(II), Zn(II), Mn(II) and Co(II) are 1 : 2 electrolytes. On the basis of electronic spectral studies and molar conductance measurements an octahedral structure has been proposed for Mn(II) and Co(II) complexes, tetrahedral for Zn(II) complex and square planar for Ni(II) and Cu(II). The thermal behavior of the compounds, studied by TGA in a nitrogen atmosphere up to 800°C, reveal that the complexes have higher thermal stability than the macrocycle. All the synthesized compounds and standard drugs kanamycin (antibacterial) and miconazole (antifungal) have been screened against bacterial strains Staphylococcus areus, Escherichia coli and fungal strains Candida albicans, Aspergillus niger. The metal complexes inhibit growth of bacteria to a greater extent than the ligand.  相似文献   

16.
A new azo dye ligand of sulfadiazine with 5‐nitro‐8‐hydroxyquinoline (H2L) and its Cu(II), Mn(II), Co(II), and Ni(II) complexes have been synthesized and characterized using CHN, 1H NMR, EI‐mass, inductive coupled plasma, molar conductance, IR, thermogravimetric analysis, magnetic moment measurements, and UV–vis spectra. On the basis of spectral studies and analytical data, the azo dye acts as a monobasic bidentate ligand coordinating to the metal ions via deprotonated OH and azo nitrogen atom. The spectral data showed that the synthesized complexes have octahedral geometry. The application of the obtained chelates in the oxidative decomposition of three different textile dyes (i.e., AB92, AB40, and AB129) in the presence of H2O2 as an oxidant has been studied. The obtained results indicated that the reactivity of catalysts toward the decolorization of AB40 showed the following order: Cu complex > Ni complex > Co complex > Mn complex; the reactions obey the first‐order reaction mechanism, and the rate constants were determined.  相似文献   

17.
Mn(II), Co(II), Ni(II) and Cu(II) complexes of 5‐mercapto‐1,2,4‐triazol‐3‐imine‐2′‐hydroxynaphthaline have been synthesized and characterized by elemental analysis, IR, 1H NMR, EI‐mass, UV‐Vis, and ESR (electron spin resonance) spectra, molar conductance, magnetic moment measurements, DC conductivity and thermogravimetric analysis. IR spectra confirm that the ligand molecule existed in both thione and thiole forms. The molar conductance values indicate the complexes are nonelectrolyte. The magnetic moment values of the complexes display paramagnetic behavior. All studies confirm the formation of an octahedral geometry for complex 1 and the other complexes have tetrahedral geometrical structures. The structures of the complexes have also been theoretically studied by using the molecular mechanic calculations by the hyperchem. 8.03 molecular modeling program which confirm the proposed structures. The Schiff‐base ligand and its metal complexes have also been screened for their antimicrobial activities.  相似文献   

18.
A new Ni(II), Cu(II) and Sn(II) Schiff base complexes were synthesized in this work. The characterization of the new complexes is carried out by elemental analysis, FT‐IR, UV–Visible, 1H NMR and 13C NMR spectroscopy, conductance analysis, magnetic measurements and thermal gravimetric analysis. It was found that the ligand behaves as a dibasic bidentate which coordinated to the metal center through two deprotonated hydroxyl groups to form tetrahedral complex with Ni(II) and octahedral complex with Cu(II). The ligand acts as neutral bidentate through azomethine nitrogen and thiazol sulfur to form octahedral complex with Sn(II). The synthesized complexes are evaluated as catalysts for oxidative degradation of indigo carmine dye using H2O2 as oxidant and the efficiency of the catalysts is determined. The copper complex shows the best catalytic action with efficiency 92.17% after 25 min.  相似文献   

19.
New N2O2 donor type Schiff bases have been designed and synthesized by condensing acetylaceto-4-aminoantipyrine/acetoacetanilido-4-aminoantipyrine with 2-amino benzoic acid in ethanol. Solid metal complexes of the Schiff bases with Cu(II), Ni(II), Co(II), Mn(II), Zn(II), VO(IV), Hg(II) and Cd(II) metal ions were synthesized and characterized by elemental analyses, magnetic susceptibility, molar conduction, FAB Mass, IR, UV-Vis., 1H NMR, and ESR spectral studies. The data show that the complexes have a composition of the ML type. The UV-Vis., magnetic susceptibility, and ESR spectral data of the complexes suggest a square planar geometry around the central metal ion, except for VO(IV) complexes, which have square-pyramidal geometry. The redox behavior of copper and vanadyl complexes has been studied by cyclic voltammetry. The nuclease activity of the above metal complexes shows that the complexes cleave DNA through redox chemistry. In the presence of H2O2, all the complexes are capable of cleaving calf thymus DNA plasmids, in order to compare the cleavage efficiency of all metal complexes in the two different ligand environments. In this assay, Cu(II), Ni(II), Co(II), and Zn(II) exhibit more cleavage efficiency than other metal ions. This article was submitted by the authors in English.  相似文献   

20.
A novel tetradentate N2O2 type of Knoevenagel condensate Schiff base, synthesized from 4‐amino‐2,3‐dimethyl‐1‐phenyl‐3‐pyrazolin‐5‐one (4‐aminoantipyrine) and 3‐(cinnamyl)‐pentane‐2,4‐dione, forms stable complexes with transition metal ions such as Cu(II), Co(II), Ni(II) and Zn(II). The structural features were derived from elemental analysis, molar conductance measurements, infrared, UV–visible, 1H NMR, 13C NMR, mass and electron paramagnetic resonance spectroscopies. These complexes show high conductance values, supporting their electrolytic nature. Spectroscopic and other analytical data of the complexes suggest square planar geometry. In vitro calf thymus DNA binding studies were performed by employing UV–visible absorption spectroscopy, viscometry and cyclic voltammetry. These techniques indicate that all the metal complexes bind to DNA via intercalation mode. Antimicrobial screening of the synthesized ligand and complexes was conducted against Gram‐positive bacteria, Gram‐negative bacteria and fungi. These complexes exhibit higher antimicrobial activities than the free Schiff base, as investigated using the minimum inhibitory concentration method. Gel electrophoresis reveals that these complexes also promote the cleavage of pUC18 plasmid DNA in the presence of activators. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号