首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The new complexes of Cu (II) and Ni (II) of a tridentate Schiff base ligand derived from 9,10‐phenanthrenequinone and p‐toluic hydrazide have been synthesized and characterized by elemental analysis, electrical conductometry, FT‐IR, Mass, NMR and UV–Vis. The DFT calculations were carried out at B3LYP/6‐31G*(d) level for the determination of the optimized structure of the ligand and its complexes. The as‐synthesized compounds were screened for their antimicrobial activity. Also, their binding behavior with fish salmon‐DNA (FS‐DNA) and human serum albumin (HSA) were studied by different kinds of spectroscopic and molecular modeling techniques. The fluorescence data at different temperatures were applied in order to estimate the thermodynamics parameters of interactions of ligand and its complexes with DNA and HSA. The results showed that the as‐made compounds could bind to FS‐DNA and HSA via the groove binding as the major binding mode. According to molecular docking calculation and competitive binding experiments, these compounds bind to the minor groove of DNA and hydrophobic residues located in the subdomain IB of HSA. In addition, the molecular docking results kept in good consistence with experimental data.  相似文献   

2.
A heterocyclic compound, 2‐(aminomethyl)benzimidazole dihydrohydrochloride, was treated with nitrobenzaldehyde to form a Schiff base that was made to react with divalent metals. A co‐ligand, either 1,10‐phenanthroline or 2,2′‐bipyridine, was added to this mixture to obtain metal chelators of type [ML(co‐L)2]Cl2. They were in 1:1:2 stoichiometry ratio, which was characterized by various spectroscopic techniques that suggested an octahedral geometry around the central metal ions. These complexes were investigated for their binding affinities with calf thymus (CT) DNA, using various techniques, such as UV–Vis, viscosity, cyclic voltammetry (CV), etc. The binding interaction studies revealed intercalation as the possible binding mode of the complexes with the CT DNA. In addition, these complexes were screened for their antimicrobial potential and DNA denaturing tendencies using gel electrophoretic assay. The antimicrobial screening investigation showed that the complexes behaved as better antimicrobial agents than the ligand, especially, complex 5 shows exceptional activity even in the electrophoretic assay along with the antimicrobial efficacy. Moreover, complex 5 was able to denature the plasmid DNA better than the other compounds. All the compounds were screened for cytotoxic efficacy, and the IC50 values suggest that the compounds possess cytotoxic activity to some extent that is almost the same as the activity of cisplatin.  相似文献   

3.
A new series of mercaptopyrimidine Ru(III) complexes were synthesized and characterized using various spectral techniques like single‐crystal X‐ray diffraction, Fourier transform infrared and NMR spectroscopies, thermogravimetric analysis and energy‐dispersive X‐ray analysis. The complexes were evaluated for their pharmacological activities like in vitro antimicrobial, anticancer, antituberculosis and antioxidant activities. The DNA binding of the complexes was investigated by absorption and emission spectral measurements which indicated that the complexes bind to DNA via intercalation, with molecular docking studies validating the results. DNA cleavage studies of the complexes were carried out.  相似文献   

4.
Cu(II), Ni(II) and Zn(II) complexes of (E)‐2‐((2,4‐dihydroxybenzylidene)amino)‐3‐(1H‐indol‐3‐yl)propanoic acid Schiff base ( L ) were synthesized and characterized by various spectral methods. ESI‐MS was used to confirm the structure of synthesized compounds. Molecular geometries of the complexes were predicted by optimizing the structure by DFT/B3LYP method with LANL2DZ basis set in the gas phase. The interaction of the metal complexes with CT‐DNA and BSA protein has been examined by UV‐vis, fluorescence and viscometer titrations reveal that the complexes bind to DNA through intercalation binding mode. The copper complexes exhibit effective cleavage of pUC19 DNA by the oxidative mechanism. The synthesized compounds screened for their antibacterial activities against various bacteria strains exhibit the L and copper complex show potential activity against Pseudomonas aeruginosa and Escherichia coli, respectively. Subsequently, molecular docking studies were performed on to understand the binding of the compounds with DNA, BSA and bacteria.  相似文献   

5.
Three new metal complexes [Cu(L)2] (1), [Co(L)2] (2) and [Zn(L)2] (3) have been prepared by the reaction of hydrated salts of metal (II) acetate with new Schiff base ligand HL, [2‐((4‐(dimethylamino)phenylimino)methyl)‐4,6‐di‐t‐butylphenol] and characterized by different physico‐chemical analyses such as elemental analysis, single XRD, 1H NMR, FTIR and UV–Vis spectroscopic techniques. Their biomolecular docking, antimicrobial and cytotoxicity studies have also been demonstrated. The proposed structure of Schiff base ligand HL and complex 2 are confirmed by Single crystal X‐ray crystallography study. This analysis revealed that metal (II) complexes remain in distorted tetrahedral coordination environments. The electronic properties such as HOMO and LUMO energies are carried out by gaseous phase DFT/B3LYP calculations using Gaussian 09 program. Complex 1 showed a good binding propensity to the DNA and HSA, during the assessment of docking studies. Schiff base ligand HL and its metal (II) complexes, 1–3 screened for their in vitro antimicrobial activities using the disc diffusion method against selected microbes. Complex 1 shows higher antimicrobial activity than complexes 2, 3 and Schiff base ligand HL. According to the results obtained from the cytotoxic studies, Schiff base ligand HL and its metal (II) complexes 1–3 have better cytotoxicity against MCF‐7 cell lines with potency higher than the currently used chemotherapeutic agent cyclophosphamide.  相似文献   

6.
Four novel tryptophan based metal (II) complexes of the type [ML (Try)2] were prepared by using pyrazolone derived Schiff base ligand. The proposed structure was confirmed by physicochemical methods which reveal octahedral coordination environment around the metal center. Intercalative binding mode of the complexes with CT DNA was confirmed by electronic absorption titration, viscosity measurements and fluorescence spectroscopy. Efficiency of DNA cleavage ability of the metal complexes was explored by the gel electrophoresis technique. The antimicrobial activities of the metal complexes showed potent biocidal activity. The percentage of free radical scavenging activity shows that the complexes are very reactive towards DPPH. Moreover, their cytotoxicity was tested against the two cancer cell lines (MCF‐7 and HepG2) and one normal cell line (NHDF) respectively. The MTT assay shows that the complexes have the anticancer efficacy. Moreover, the complexes exhibit a limited cytotoxicity effect on normal cell line NHDF. The morphological changes of apoptosis cell death were investigated by using Hoechst 33258 staining method. In addition, the Molecular docking studies was executed to consider the nature of binding and binding affinity of the synthesized compounds with DNA (PDB: 1BNA) and protein (PDB: 3hb5).  相似文献   

7.
Amidst the very many metallodrugs for the treatment of cancer regularly reported, the development of the next generation of compounds with an aim of overcoming the shortcomings by enhancing biological activity and cytotoxicity but exhibiting low toxicity is essential. Herein we report such octahedral metal(II) complexes ( 1 – 12 ) containing triazole‐derived Schiff base as the scaffold. The complexes were synthesized and characterized by means of elemental analysis and various spectroscopic techniques. The complexes were subjected to various investigations that involved their interaction with calf thymus DNA and supercoiled pBR322 DNA. In vitro antimicrobial studies were also conducted in addition to the use of spectrophotometric, spectrofluorometric, cyclic voltammetric and hydrodynamic techniques. Although all complexes showed activity, complex 9 revealed excellent DNA proclivity, DNA cleaving tendencies and antimicrobial efficacy. All copper(II) complexes were evaluated for their antiproliferative activity against a panel of human cancer cell lines (HeLa, Hep‐2, MCF‐7 and NHDF). Complexes 1 – 12 showed activity against all the cell lines with low toxicity towards normal cell line, and the activity of complex 9 towards Hep‐2 was prominent. The effect of the ligand system on the complexes is also discussed along with the importance of tuning the ligand system.  相似文献   

8.
9.
The absolute necessity to fight some class of tumor is perceived as serious health concerns, so the discovery and development of effective anticancer agents are urgently needed. (E)‐4‐((2‐hydroxyphenyl)diazenyl)‐3‐phenyl‐1H‐pyrazol‐5(4H)‐one, HL, and its Ni(II), Pd(II) and Pt(II) complexes were synthesized and the biological activity was evaluated for antitumor, antioxidant and antimicrobial activity as well as DNA cleavage. Their structures were assigned depending on the elemental analysis, conductivity, magnetic moment, spectral measurements (IR, 1HNMR, mass and UV–Vis) and thermal analysis. 3D molecular modeling using DFT method confirmed that the geometrical structures agree well with the suggested experimental ones. The antitumor activity was evaluated against four different cell lines using MTT assay. The ligand HL showed a potent cytotoxic activity compared to 5‐fluorouracil as a reference drug. For metal complexes, the order of activity was: Pd(II) > Ni(II) > Pt(II). A remarkable antioxidant activity for the ligand HL was recorded. It was higher than that of the metal complexes. Results of antimicrobial experiments revealed that all compounds were moderate to highly active against selected bacterial strains but inactive as antifungal except Pd(II) which showed a moderate antifungal activity. Gel electrophoresis showed insignificant nucleases activity for the ligand or its metal complexes even in the presence of H2O2 providing protection of DNA from damage. The antitumor activity of our compounds may be not due to DNA cleavage but may be referred to a mechanism similar to that of 5‐fluorouracil which interfere with DNA replication. The present work suggests the use of this ligand in the design and development of new anticancer drugs.  相似文献   

10.
The present work describes the chemical preparation of Schiff bases derived from 4,4′-diaminodiphenyl sulfone (L1–L5) and their Co(II) metal complexes. The evaluation of antimicrobial and anticancer activities against MCF-7 cell line and human lung cancer cell line A-549 was performed. The aforementioned synthesized compounds are characterized by spectroscopic techniques and elemental analysis confirms successful synthesis. The results from the above analytical techniques revealed that the complexes are in an octahedral geometry. The antimicrobial activity of the synthesized Schiff base ligands and their metal complexes under study was carried out by using the agar well diffusion method. The ligand and complex interactions for biological targets were predicted using molecular docking and high binding affinities. Further, the anticancer properties of the synthesized compounds are performed against the MCF-7 cell line and human lung cancer cell line A-549 using adriamycin as the standard drug.  相似文献   

11.
A series of Co(II), Ni(II), Cu(II), and Zn(II) complexes of a tridentate hydrazone were prepared and characterized by various spectro‐analytical techniques and magnetic moment studies. The complexes were found to be monomeric and non‐electrolytes. The copper complex is electrochemically active in the applied potential range. The compounds synthesized in the present study have shown promising antiproliferative activity when screened using the in vitro method against two human cancer cell lines: HeLa and HepG2. The Escherichia coli DNA‐binding properties of all the compounds were investigated with UV–visible absorption spectrophotometric titrations, viscosity measurements, DNA melting experiments and gel electrophoreses measurements. The compounds were demonstrated to act as DNA intercalators with appreciable DNA‐binding constant values. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
An azo derivative was synthesized by coupling diazotized 2,6‐diaminopyridine with p‐dimethyl amino benzaldehyde and this new ligand formed a series of metal complexes with Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) salts. These complexes were characterized on the basis of elemental analyses, molar conductance, infrared spectroscopy, UV–Vis, 1H NMR, mass spectrometry, electronic spectra, magnetic susceptibility and ESR spectral studies, conductivity measurements, thermogravimetric analyses (TG‐DTG). The molecular and electronic structure of the azo ligand was optimized theoretically and the quantum chemical parameters were calculated. The ligand and its metal complexes were subjected to X‐ray powder diffraction study. The thermal stability of the ligand and its metal complexes was examined by thermogravimetry. The ligand and its complexes were tested for their in vitro antimicrobial activity, some of the complexes showed good antimicrobial activities against some selected bacterial and fungal strains. Anticancer activity of the ligand and its metal complexes are evaluated against human cancer (MCF‐7 cells viability). Molecular docking was used to predict the binding between azo ligand and the receptors of nucleoside diphosphate kinase of Staphylococcus aureus (3Q8U) and (3HB5) which is breast cancer mutant oxidoreductase. The docking study provided useful structural information for inhibition studies.  相似文献   

13.
A novel phthalonitrile derivative bearing 2‐isopropyl‐6‐methylpyrimidin‐4‐yloxy substituents at peripheral positions was synthesized by a nucleophilic substitution reaction. Metallophthalocyanines were obtained from the reaction of the novel phthalonitrile with metal Zn, Cu, Co, and Ni salts. The characterization of the compounds was performed using elemental analysis as well as UV/Vis, FT‐IR, and 1H‐NMR spectroscopy. The aggregation behaviors of phthalocyanine complexes were also investigated. These metallophthalocyanines do not show any aggregation behavior between 10–4–10–6 M concentration range in THF. The antioxidant activities of the synthesized compounds were evaluated using three different tests: 2, 2‐diphenyl‐1‐picrylhydrazyl (DPPH) radical scavenging, metal chelating activity, and reducing power assays. All the compounds exhibited various antioxidant activities. In addition, antimicrobial activity of the compounds was tested over four gram positive and two gram negative bacteria. Moreover, the ground‐state geometries of the complexes were optimized using density functional theory (DFT) methods at B3LYP/6‐31G(d, p) level in order to obtain information about the 3D arrangements and electronic structure.  相似文献   

14.
Co(III) complexes of tridentate Schiff base ligands derived from N‐(2‐hydroxybenzylideneamino)benzamide (H 2 L 1 ) and 2‐(2‐hydroxybenzylidene)hydrazine‐1‐carboxamide ( H 2 L 2 ) were synthesized and characterized using IR, Raman, 1H–NMR and UV–Vis spectroscopies. X‐ray single crystal structures of complexes 1 and 2 have also been determined, and it was indicated that these Co(III) complexes are in a distorted octahedral geometry. The cyclic voltammetry (CV) of the complexes indicates an irreversible redox behavior for both complexes 1 and 2 . The antibacterial effects of the synthesized compounds have been tested by minimum inhibitory concentration and minimum bactericidal concentration methods, which suggested that the metal complexes exhibit better antibacterial effects than the ligands against Gram‐positive bacteria. The effects of the drug (drug  =  ligands and complexes) on bovine serum albumin (BSA) were examined using circular dichroism (CD) spectropolarimetry, and it was revealed that the BSA (BSA, as a carrier protein) secondary structure changed in the presence of the drug. Interaction of the drug with calf‐thymus DNA (CT‐DNA) was investigated by UV–Vis absorption, fluorescence emission, CV and CD spectroscopy. Binding constants were determined using UV–Vis absorption. The results indicated that the studied Schiff bases bind to DNA, with the hyperchromic effect and non‐intercalative mode in which the metal complexes are more effective than ligands. Furthermore, molecular docking simulation was used to obtain the energetic and binding sites for the interaction of the complexes with Mycobacterium tuberculosis enoyl‐acyl carrier protein reductase (InhA), and results showed that complex 1 has more binding energy.  相似文献   

15.
Co(II), Ni(II), Cu(II) and Zn(II) complexes of a novel tridentate heterocyclic ligand, 3‐{[(2‐benzoyl‐4‐chlorophenyl)imino]methyl}quinoxalin‐2(1H)‐one, have been synthesized. The ligand and the metal complexes were characterized using elemental analysis, molar conductance and magnetic susceptibility measurements, and UV–visible, Fourier transform infrared, 1H NMR, 13C NMR, electron spin resonance and DART mass spectral data. The ligand behaves as a tridentate one, coordinating through two oxygen atoms from two keto groups and through the azomethine nitrogen atom. The thermal properties of the newly synthesized compounds were determined using thermogravimetric analysis. The ligand and its metal complexes were subjected to powder X‐ray diffraction analysis by which average crystallite size and unit cell parameters were calculated. The electrochemical behaviour of the compounds was studied using cyclic voltammetry. The ligand and the metal complexes were screened for their in vitro antimicrobial activities against the bacterial strains E. coli, K. pneumoniae, S. pneumoniae and S. aureus and the fungal species A. niger, A. flavus, P. chrysogenum and R. stolonifer. DNA binding, DNA cleavage and antioxidant activities of the compounds were also evaluated. The compounds bind with DNA through groove binding. The Cu(II) and Zn(II) complexes exhibit higher superoxide anion and hydrogen peroxide scavenging activities, respectively. The Cu(II) complex exhibits better anticancer activity against the MCF7 cell line. The compounds were subjected to molecular docking study against B‐DNA dodecamer d(CGCGAATTCGCG)2 and vascular endothelial growth factor receptor kinase to justify the experimental DNA binding and MTT assay. Density functional theory studies were used to optimize the geometry of the compounds and to calculate the nonlinear optical properties. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
Four new transition metal complexes incorporating a Schiff base ligand derived from propylenediamine and 4‐formyl‐N ,N ‐dimethylaniline have been synthesized using transition metal salts. The characterization of the newly formed complexes was done from physicochemical parameters and using various techniques like 1H NMR, 13C NMR, IR, UV, electron paramagnetic resonance and mass spectroscopies, powder X‐ray diffraction and magnetic susceptibility. All the complexes were found to be monomeric in nature with square planar geometry. X‐ray powder diffraction illustrates that the complexes have a crystalline nature. The interaction of metal complexes with calf thymus DNA was investigated using UV–visible absorption, viscosity measurements, cyclic voltammetry, emission spectroscopy and docking analysis. The results indicate that the Cu(II), Co(II), Ni(II) and Zn(II) complexes interact with DNA by intercalative binding mode with optimum intrinsic binding constants of 4.3 × 104, 3.9 × 104, 4.7 × 104 and 3.7 × 104 M−1, respectively. These DNA binding results were rationalized using molecular docking in which the docked structures indicate that the metal complexes fit well into the A‐T rich region of target DNA through intercalation. The metal complexes exhibit an effective cleavage with pUC19 DNA by an oxidative cleavage mechanism. The synthesized ligand and the complexes were tested for their in vitro antimicrobial activity. The complexes show enhanced antifungal and antibacterial activities compared to the free ligand.  相似文献   

17.
The Schiff base ligand, 1‐phenyl‐3‐methyl‐5‐hydroxypyrazole‐4‐methylene‐8′‐quinolineimine, and its CuII, ZnII, and NiII complexes were synthesized and characterized. The crystal structure of the ZnII complex was determined by single‐crystal X‐ray diffraction, indicating that the metal ions and Schiff base ligand can form mononuclear six‐coordination complexes with 1:1 metal‐to‐ligand stoichiometry at the metal ions as centers. The binding mechanism and affinity of the ligand and its metal complexes to calf thymus DNA (CT DNA) were investigated by UV/Vis spectroscopy, fluorescence titration spectroscopy, EB displacement experiments, and viscosity measurements, indicating that the free ligand and its metal complexes can bind to DNA via an intercalation mode with the binding constants at the order of magnitude of 105–106 M –1, and the metal complexes can bind to DNA more strongly than the free ligand alone. In addition, antioxidant activities of the ligand and its metal complexes were investigated through scavenging effects for hydroxyl radical in vitro, indicating that the compounds show stronger antioxidant activities than some standard antioxidants, such as mannitol. The ligand and its metal complexes were subjected to cytotoxic tests, and experimental results indicated that the metal complexes show significant cytotoxic activity against lung cancer A 549 cells.  相似文献   

18.
New palladium(II) complexes, [Pd(PPh3)L] ( 2 ) and [Pd(AsPh3)L] ( 3 ), were synthesized using 4‐hydroxybenzoic acid (3‐ethoxy‐2‐hydroxybenzylidene)hydrazide ( 1 ) ligand (H2L), and characterized using various physicochemical techniques. The molecular structures of 2 and 3 were determined using single‐crystal X‐ray diffraction, which reveals a square planar geometry around the palladium(II) metal ion. In vitro DNA binding studies were conducted using UV–visible absorption spectroscopy, emission spectroscopy, cyclic voltammetry and viscosity measurements, which suggest that the metal complexes act as efficient DNA binders. The interaction of ligand H2L and complexes 2 and 3 with bovine serum albumin (BSA) was investigated using UV–visible and fluorescence spectroscopies. Absorption and emission spectral studies indicate that complexes 2 and 3 interact with BSA protein more strongly than the parent ligand. The free radical scavenging potential of all the synthesised compounds ( 1 – 3 ) was also investigated under in vitro conditions. In addition, the in vitro cytotoxicity of the complexes to tumour cells lines (HeLa and MCF‐7) was examined using the MTT assay method.  相似文献   

19.
Vanadium(IV) Schiff base complexes (VOL1‐VOL3) were synthesized and characterized by elemental analysis, various spectral methods and single crystal XRD studies. Structural analysis of VOL2 reveals that the central vanadium ion in the complex is six coordinate with distorted octahedral geometry. Density functional theory (DFT) and time dependent (TD‐DFT) studies were used to understand the electronic transitions observed in the complexes in UV–Vis spectra. The electrochemical behavior of the complexes was investigated in acetonitrile medium exhibit quasi‐reversible one electron transfer. The DNA and BSA protein binding interaction of vanadium complexes has been explored by UV–Vis and fluorescence spectral methods and viscosity measurements reveal that the complexes interact with CT‐DNA through intercalation mode and follows the order VOL1 < VOL3 < VOL2. The complexes exhibit binding interactions with BSA protein. The complexes act as chemical nuclease and cleave DNA in the presence of H2O2. The 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH) assay was used to evaluate the radical scavenging activity demonstrate the antioxidant property of the complexes. The antimicrobial activity was screened for several microorganisms, Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, Escherichia coli. The mimicking of vanadium haloperoxidase was investigated by the bromination of the organic substrate phenol red by vanadium complexes in the presence of bromide and H2O2.  相似文献   

20.
A novel chalcone, namely 5‐(4‐(dimethylamino)phenyl)‐1‐(thiophen‐2‐yl)penta‐2,4‐dien‐1‐one, DMATP, and its complexes with nickel(II), vanadium(III), palladium(II) and platinum(II) metal ions were synthesized and characterized using a set of chemical and spectroscopic tools including elemental analysis, electrical conductance, magnetic susceptibility and spectral techniques. The interactions of the synthesized chalcone and its metal complexes with DNA were studied using steady‐state absorption and emission techniques as well as viscosity and electrochemical measurements. The obtained results confirm DNA intercalation. Additionally, theoretical studies were performed for all the investigated compounds using DFT/B3LYP calculations. The optimized geometries are found to be in good agreement with the suggested experimental structures. The bond lengths, bond angles, chemical reactivity, energy components, binding energy and dipole moment were evaluated. Also, theoretical infrared intensities and thermodynamic parameters for all compounds were calculated. Molecular docking calculations show that the Ni(II) complex exhibits the highest DNA binding activity, which agrees well with the experimental results. Finally, the compounds were screened for antimicrobial activity using several microorganisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号