首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polymer complexes of Co(II), Ni(II), Mn(II), Cr(III) and Cd(II) were prepared by the reaction of 3‐allyl‐5‐[(4‐nitrophenylazo)]‐2‐thioxothiazolidine‐4‐one (HL) with metal ions. The structure of polymer complexes was characterized by elemental analysis, IR, UV–Vis spectra, X‐ray diffraction analysis, magnetic susceptibility, conductivity measurements and thermal analysis. Reaction of HL with Co(II), Ni(II), Mn(II), Cr(III) and Cd(II) ions (acetate or chloride) give polymer complexes ( 1–5 ) with general stoichiometric [M(L)(O2CCH3)(H2O)2]n (where L = anionic of HL and M = Co(II) (1) or Ni(II) (2) ), [Mn(HL)2(OCOCH3)2]n (3) , [Cr(L)2(Cl)(H2O)]n (4) and [Cd(HL)(O2CCH3)2]n (5) . The value of HOMO–LUMO energy gap (ΔE) for forms (A‐C) of monomer (HL) is 2.529, 2.296 and 2.235 eV, respectively. According to ΔE value, compound has minimum ΔE is the more stable, so keto hydrazone form (C) is more stable than the other forms (azo keto form (A), azo enol form (B)). The interaction between HL, polymer complexes of Co(II), Ni(II), Mn(II), Cr(III) and Cd(II) with Calf thymus DNA showed hypochromism effect. The HL and its polymer complexes were tested against some bacterial and fungal species. The results showed that the Cr(III) polymer complex (4) has more antibacterial activity than HL and polymer complexes (1–3 and 5) against Bacillus subtilis, Staphylococcus aureus and Salmonella typhimurium.  相似文献   

2.
Monomer of N‐[4‐(5‐methyl‐isoxazol‐3‐ylsulfamoyl)‐phenyl]‐acrylamide (HL) and some transition metal polymeric complexes of the general formula {[M(HL)(OH2)2(OCOCH3)2] xH2O}n (M = Co(II), x = 2; Ni(II), x = 3; Mn(II), x = 2) and [Cd(HL)2(OCOCH3)2] were synthesized and characterized by elemental analysis, IR, UV spectroscopy, conductance measurements, magnetic susceptibility, thermogravimetric analyses and X‐ray diffraction analysis. In all polymer complexes, the spectral data revealed that the ligand act as bidentate neutral molecule and coordinate to metal ion through enolic sulphonamide OH and isoxazol‐N. In all polymer complexes, the spectral data revealed that the ligand act as bidentate neutral molecule and coordinate to metal ion through enolic sulphonamide OH and isoxazol‐N. The molar conductance data revealed that the polymer complexes are non‐electrolytes while UV‐vis and magnetic measurements data have been shown that the polymer complexes have octahedral geometry. All the studies revealed coordination six for the metals in all the polymer complexes and octahedral structures were suggested. The inhibitive effect of HL against C38 steel was investigated in 2 M HCl solution (tafel polarization, electrochemical impedance spectroscopy (EIS) and electrochemical frequency modulation (EFM) methods). The type of HL is mixed inhibitor whose adsorption habit onto C38 steel.  相似文献   

3.
A novel bidentate Schiff base ligand (HL, Nanobidentate Ferrocene based Schiff base ligand L (has one replaceable proton H)) was prepared via the condensation of 2‐amino phenol with 2‐acetyl ferrocene. The ligand was characterized using elemental analysis, mass spectrometry, infrared (IR) spectroscopy, 1proton nuclear magnetic resonance (H‐NMR) spectroscopy, scanning electron microscopy (SEM), and thermal analysis. The corresponding 1:1 metal complexes with some transition‐metal ions were additionally characterized by their elemental analysis, molar conductance, SEM, and thermogravimetric ana1ysis (TGA). The complexes had the general formula [M(L)(Cl)(H2O)3]xCl·nH2O (M = Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), and Cd(II)), (x = 0 for Mn(II), Co(II), Ni(II), Cu(II), Zn(II), and Cd(II), x = 1 for Cr(III) and Fe(III)), (n = 1 for Cr(III), n = 3 for Mn(II) and Co(II), n = 4 for Fe(III), Ni(II), Cu(II), Zn(II), and Cd(II)). Density functional theory calculations on the HL ligand were also carried out in order to clarify molecular structures by the B31YP exchange‐correlation function. The results were subjected to molecular orbital diagram, highest occupied mo1ecu1ar orbital–lowest occupied molecular orbital, and molecular electrostatic potential calculations. The parent Schiff base and its eight metal complexes were assayed against four bacterial species (two Gram‐negative and two‐Gram positive) and four different antifungal species. The HL ligand was docked using molecular operating environment 2008 with crystal structures of oxidoreductase (1CX2), protein phosphatase of the fungus Candida albicans (5JPE), Gram(?) bacteria Escherichia coli (3T88), Gram(+) bacteria Staphylococcus aureus (3Q8U), and an androgen‐independent receptor of prostate cancer (1GS4). In order to assess cytotoxic nature of the prepared HL ligand and its complexes, the compounds were screened against the Michigan cancer foundation (MCF)‐7 breast cancer cell line, and the IC50 values of compounds were calculated.  相似文献   

4.
Coordination compounds of Mn (II), Fe (III), Co (II), Ni (II), Cu (II) and Cd (II) ions were synthesized from reaction with Schiff base ligand 4,6‐bis((E)‐(2‐(pyridin‐2‐yl)ethylidene)amino)pyrimidine‐2‐thiol (HL) derived from the condensation of 4,6‐diaminopyrimidine‐2‐thiol and 2‐(pyridin‐2‐yl)acetaldehyde. Microanalytical data, magnetic susceptibility, infrared and 1H NMR spectroscopies, mass spectrometry, molar conductance, powder X‐ray diffraction and thermal decomposition measurements were used to determine the structure of the prepared complexes. It was found that the coordination between metal ions and bis‐Schiff base ligand was in a molar ratio of 1:1, with formula [M (HL)(H2O)2] Xn (M = Mn (II), Co (II), Ni (II), Cu (II) and Cd (II), n = 2; Fe (III), n = 3). Diffuse reflectance spectra and magnetic susceptibility measurements suggested an octahedral geometry for the complexes. The coordination between bis‐Schiff base ligand and metal ions was through NNNN donor sites in a tetradentate manner. After preparation of the complexes, biological studies were conducted using Gram‐positive (B. subtilis and S. aureus) and Gram‐negative (E. coli and P. aeruginosa) organisms. Metal complexes and ligand displayed acceptable microbial activity against both types of bacteria.  相似文献   

5.
Mononuclear Mn(II), Co(II), Ni(II), Zn(II), Cd(II), Mg(II), Sr(II), Ba(II), Ca(II), Pt(IV), Au(III), and Pd(II) complexes of the drug amlodipine besylate (HL) have been synthesized and characterized by elemental analysis, spectroscopic technique (IR, UV–Vis, solid reflectance, scanning electron microscopy, X-ray powder diffraction, and 1H-NMR) and magnetic measurements. The elemental analyses of the complexes are confirmed by the stoichiometry of the types [M(HL)(X)2(H2O)]·nH2O [M = Mn(II), Co(II), Zn(II), Ni(II), Mg(II), Sr(II), Ba(II), and Ca(II); X = Cl? or NO3 ?], [Cd(HL)(H2O)]Cl2, [Pd(HL)2]Cl2, [Pt(L)2]Cl2, and [Au(L)2]Cl, respectively. Infrared data revealed that the amlodipine besylate drug ligand chelated as monobasic tridentate through NH2, oxygen (ether), and OH of besylate groups in Mn(II), Co(II), Ni(II), Zn(II), Cd(II), Mg(II), Sr(II), Ba(II), Ca(II), and Au(III) complexes, but in Pt(IV) and Pd(II) complexes, the amlodipine besylate coordinates via NH2 and OH (besylate) groups. An octahedral geometry is proposed for all complexes except for the Cd(II), Pt(IV), and Pd(II) complexes. The amlodipine besylate free ligand and the transition and non-transition complexes showed antibacterial activity towards some Gram-positive and Gram-negative bacteria and the fungi (Aspergillus flavus and Candida albicans).  相似文献   

6.
A new Schiff base ligand (HL) was prepared via a condensation reaction of quinoline‐2‐carboxaldhyde with 2‐aminophenol in a molar ratio of 1:1. Its transition metal mixed ligand complexes with 1,10‐phenanthroline (1,10‐phen) as co‐ligand were also synthesized in a 1:1:1 ratio. HL and its mixed ligand complexes were characterized using elemental analysis, infrared, 1H NMR, mass and UV–visible spectroscopies, molar conductance, magnetic measurements, solid reflectance, thermal analysis, electron spin resonance and X‐ray diffraction. Molar conductance measurements showed that all complexes have an electrolytic nature, except Cd(II) complex. From elemental and spectral data, the formulae [M(L)(1,10‐phen)(H2O)]Clx?nH2O (where M = Cr(III) (x = n = 2), Mn(II) and Ni(II) (x = 1, n = 2), Fe(III) (x = n = 2), Co(II), Cu(II) and Zn(II) (x = 1, n = 2)) and [Cd(L)(1,10‐phen)Cl]?3H2O for the metal complexes have been proposed. The geometric structures of complexes were found to be octahedral. Powder X‐ray diffraction reflected the crystalline nature of the complexes; however, the Schiff base is amorphous. HL and its mixed ligand complexes were screened against Gram‐positive bacteria (Streptococcus pneumoniae and Bacillus subtilis) and Gram‐negative bacteria (Pseudomonas aeruginosa and Escherichia coli). Antifungal activity was determined against Aspergillus fumigatus and Candida albicans, the data showing that most complexes had activity less than that of the Schiff base while Mn(II), Fe(III) and Ni(II) complexes showed no significant antifungal activity. The anticancer activity of HL and its metal complexes was also studied against breast and colon cell lines. The metal complexes showed IC50 higher than that of HL, especially the Cu(II) complex which showed the highest IC50 against breast cell line.  相似文献   

7.
Complexes of Mn(II), Fe(II), Co(II), Ni(II), Cu(II) and Pd(II) with di-N-phenyl pyromellitic diimide (PhPMDI) and di-N-pyridyl pyromellitic diimide (PyPMDI) were prepared and characterized based on analytical, molar conductance, magnetic, IR, PMR, electronic and ESR data. Based on analytical and molar conductance, the complexes have been formulated as [M(PhPMDA)(H2O)2]n (M = Mn, Fe, Co, Ni), [Cu(PhPMDA)]n [Pd2(PhPMDA)Cl2(H2O)2], [M(PyPMDA)]n (M = Mn, Fe, Co, Ni and Cu) and [Pd2(PyPMDA)Cl2] In all these complexes PhPMDA acts as a mononegative bidentate ligand whereas PyPMDA acts as a mononegative tridentate one in the form of amide rather than imide. The geometries of the complexes have been proposed based on the electronic spectra. The various bonding parameters have been calculated from the ESR spectra of Cu(II) complexes.  相似文献   

8.
New pincer ligand, 6-hydroxymethylpyridine-2-carboxylic acid methyl ester, HL, and its bipositive, tripositive and uranyl metal complexes have been synthesized and characterized by elemental and thermal analyses, IR, diffuse reflectance and 1H NMR spectra, molar conductance and magnetic moment measurements. The downfield shift of the aliphatic OH signal (from 3.87 vs. 2.96 ppm in the ligand) upon complexation indicates the coordination by protonated aliphatic OH group. Zn(II) and UO2(II) complexes are found to be diamagnetic as expected. The low molar conductance values indicate that Ni(II) and Zn(II) complexes are non electrolytes; Fe(II), Co(II), Cu(II) and UO2(II) complexes are 1:2  electrolytes while Fe(III) complex is a 1:3 electrolyte. The general compositions of the complexes are found to be [M(HL)X2nH2O where M=Ni(II) (X=Cl, n=1) and Zn(II) (X=Br, n=0); and [M(HL)2]Xm·nH2O where M=Fe(II) (X=Cl, m=2, n=0), Fe(III) (X=Cl, m=3, n=4), Co(II) (X=Cl, m=2, n=0), Cu(II) (X=Cl, m=2, n=0) and UO2(II) (X=NO3, m=2, n=0). The thermal behaviour of the complexes has been studied and different thermodynamic parameters are calculated using Coats-Redfern method.  相似文献   

9.
Summary Complexes of allopurinol (apH) with FeIII and several 3d metal(II) (e.g. Fe, Co, Ni and Cu) perchlorates were prepared. The solid complexes isolated included two monomeric hexacoordinated adducts of the type [Fe(apH)3-(OClO3) (OH2)2]ClO4 and [Fe(apH)3(OClO3)2(OH2)]ClO4, involving N(8)-bound neutral apH ligands, and polymeric Co, Ni or Cu complexes containing both neutral apH and monoanionic ap- ligands. The latter three complexes involved both N(8)-bound terminal apH and N(1), N(8)- or N(1), N(9)-bound bridging ap- ligands, and were of the following types: [(apH)2Cu(ap)] n (ClO4) n , tetrahedral; [(apH)(H2O)(OClO3)Co(ap)] n , pentacoordinated; and [(apH)2(H2O)(OClO3)Ni(ap)] n , hexacoordinated.Presented in part at the 203rd. American Chemical Society National Meeting; see Ref. 1.  相似文献   

10.
Physicochemical studies were performed to study new ferrocene based Schiff base ligand (HL), (Z)‐(4‐(1‐((2‐carboxycyclohexa‐2,4‐dien‐1‐yl)imino)ethyl)[bis(η 5 cyclopenta‐1,3‐dien‐1 yl)]iron with some transition metal ions to form a series of ferrocenyl derivatives bearing transition metal complexes of the type [M(L)Cl(H2O)3] (M = Ni(II), Cu(II)), [M(L)Cl(H2O)3]nH2O (M = Mn(II) (n = 1), Co(II) (n = 1), Zn(II) (n = 2) and Cd(II) (n = 3)) and [M(L)Cl(H2O)3]Cl.nH2O (M = Cr(III) (n = 2) and Fe(III) (n = 1)). The new ligand and metal ion complexes have been prepared and characterized by IR, UV‐Vis, 1H‐NMR, TG/DTA, elemental analysis and mass spectrometry. The TGA/DTG analysis revealed that the ferrocene precursors decompose spontaneously to form iron(II) oxide. The molecular and electronic structure of the ligand (HL) was optimized theoretically and the quantum chemical parameters were calculated. The molecular structure with a variety of functionalities can be used to investigate the coordination sites and the total charge density around each atom. DFT‐based molecular orbital energy calculations of the new ligand have been also studied. All of the complexes were screened against a panel of Gram (+) bacteria: Streptococcus pneumoniae and Bacillis subtilis , Gram (−) bacteria: Pseudomonas aeruginosa and Escherichia coli and panel of fungi: Aspergillus fumigatu , Syncephalastrum racemosum , Geotricum candidum and Candida albicans . Anticancer activity screening for the tested compounds using 4 different concentrations of HL ligand against human tumor cells of breast cancer cell line MCF‐7 were obtained. Molecular docking was used to predict the binding between HL ligand and human‐DNA‐Topo I complex (PDB ID: 1SC7), the receptors of breast cancer mutant oxidoreductase (PDB ID: 3HB5), crystal structure of Escherichia coli (PDB ID: 3T88), to identify the binding mode and the crucial functional groups interacting with the three proteins.  相似文献   

11.
New zinc (II), copper (II), nickel (II) and cobalt (III) complexes, [Zn (HL)2]I2 (1) , [Cu (HL)Cl2] (2) , [Cu (HL)Br2] (3) , [Cu (HL)(H2O)2](ClO4)2 (4) , [Ni (HL)2]I2·H2O (5) , [Co(L)2]Cl (6) , [Co(L)2]NO3 (7) , [Co(L)2]I·[Co(L)2](I3) (8) were obtained with 2-formylpyridine 4-allyl-S-methylisothiosemicarbazone ( HL ). The isothiosemicarbazone ligand was characterized by NMR (1H and 13C), IR spectroscopy and X-ray diffraction. All the complexes were characterized by elemental analysis, IR, UV–Vis, ESI-MS spectroscopy, molar conductivity, magnetic susceptibility measurements. X-ray diffraction analysis on the monocrystal and powder elucidated the structure of the complexes 1 , 5 , 7 and 8 . The ligand and the complexes were tested for their antioxidant and antimicrobial activity against Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae and Candida albicans. Also, the antiproliferative properties of these compounds on human leukemia HL-60, human cervical epithelial HeLa, human epithelial pancreatic adenocarcinoma BxPC-3, human muscle rhabdomyosarcoma spindle, large multinucleated RD cells and normal MDCK cells have been investigated. The nickel complex 5 and cobalt complexes 6 , 7 showed promising antiproliferative activity and low toxicity.  相似文献   

12.
A novel naphthalenediol‐based bis(salamo)‐type tetraoxime compound (H4L) was designed and synthesized. Two new supramolecular complexes, [Cu3(L)(μ‐OAc)2] and [Co3(L)(μ‐OAc)2(MeOH)2]·4CHCl3 were synthesized by the reaction of H4L with Cu(II) acetate dihydrate and Co(II) acetate dihydrate, respectively, and were characterized by elemental analyses and X‐ray crystallography. In the Cu(II) complex, Cu1 and Cu2 atoms located in the N2O2 sites, and are both penta‐coordinated, and Cu3 atom is also penta‐coordinated by five oxygen atoms. All the three Cu(II) atoms have geometries of slightly distorted tetragonal pyramid. In the Co(II) complex, Co1 and Co3 atoms located in the N2O2 sites, and are both penta‐coordinated with geometries of slightly distorted triangular bipyramid and distorted tetragonal pyramid, respectively, while Co2 atom is hexa‐coordinated by six oxygen atoms with a geometry of slightly distorted octahedron. These self‐assembling complexes form different dimensional supramolecular structures through inter‐ and intra‐molecular hydrogen bonds. The coordination bond cleavages of the two complexes have occurred upon the addition of the H+, and have reformed again via the neutralization effect of the OH?. The changes of the two complexes response to the H+/OH? have observed in the UV–Vis and 1H NMR spectra.  相似文献   

13.
An organometallic NO‐bidentate Schiff base, (2‐(1‐((1‐carboxyethyl)imino)ethyl) cyclopenta‐2,4‐dien‐1‐yl)(cyclopenta‐2,4‐dien‐1‐yl) iron (HL) was synthesized by condensation of 2‐acetylferrocene with amino acid alanine. Then its octahedral Cr (III), Mn (II), Fe (III), Co (II), Ni (II), Cu (II), Zn (II) and Cd (II) complexes were synthesized. All compounds were characterized on the basis of elemental analysis (C, H, N and M), molar conductivity, FT‐IR, UV–Vis, 1H‐NMR, SEM, mass analysis and thermal studies. Furthermore, computational studies of HL ligand have been carried out by DFT/B3LYP method. HOMO and LUMO energy values, chemical hardness‐softness, electronegativity, electrophilic index and other parameters were calculated. SEM micrographs of HL ligand and its [Cd (HL)(H2O)2Cl2].2H2O complex, showed that they were prepared in nano‐structure forms with particle size 54 and 41 nm, respectively. Antifungal and antibacterial activities of HL ligand and its metal complexes have been screened in vitro against different species such as Aspergillus fumigatus, Candida albicans, Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Salmonella typhimurium. The synthesized compounds were evaluated for their anticancer activities against breast cancer cell line (MCF‐7) and normal melanocytes cell line (HFB‐4). It was found that [Co (HL)(H2O)2Cl2].3H2O complex had the lowest IC50 value (10.9 μg/ml) and hence was the most active one. Finally, the optimized structures of the Schiff base and its Co (II) complex have been used to accomplish molecular docking studies with receptors of 3HB5, 3MIW, 5IBV and 4WM8 to determine the most preferred mode of interaction.  相似文献   

14.
A new asymmetric Salamo‐based ligand H2L was synthesized using 3‐tertbutyl‐salicylaldehyde and 6‐methoxy‐2‐[O‐(1‐ethyloxyamide)]‐oxime‐1‐phenol. By adjusting the ratio of the ligand H2L and Cu (II), Co (II), and Ni (II) ions, mononuclear, dinuclear, and trinuclear transition metal (II) complexes, [Cu(L)], [{Co(L)}2], and [{Ni(L)(CH3COO)(CH3CH2OH)}2Ni] with the ligand H2L possessing completely different coordination modes were obtained, respectively. The optical spectra of ligand H2L and its Cu (II), Co (II) and Ni (II) complexes were investigated. The Cu (II) complex is a mononuclear structure, and the Cu (II) atom is tetracoordinated to form a planar quadrilateral structure. The Co (II) complex is dinuclear, and the two Co (II) atoms are pentacoordinated and have coordination geometries of distorted triangular bipyramid. The Ni (II) complex is a trinuclear structure, and the terminal and central Ni (II) atoms are all hexacoordinated, forming distorted octahedral geometries. Furthermore, optical properties including UV–Vis, IR, and fluorescence of the Cu (II), Co (II), and Ni (II) complexes were investigated. Finally, the antibacterial activities of the Cu (II), Co (II), and Ni (II) complexes were explored. According to the experimental results, the inhibitory effect was found to be enhanced with increasing concentrations of the Cu (II), Co (II), and Ni (II) complexes.  相似文献   

15.
Metal complexes of omeprazole (OPZ) are prepared and characterized based on elemental analyses, IR, diffuse reflectance, magnetic moment, molar conductance and thermal analyses (TGA and DTA) techniques. From the elemental analyses, the complexes have the general formula [M(L)2]X n [where M = Cr(III) (X = Cl, n = 3), Ni(II) (X = ClO4, n = 2) and Zn(II) (X = Cl, n = 2)], and [M(L)2(H2O)2]X n · yH2O (where M = Fe(III) (X = Cl, n = 3, y = 0), Co(II) (X = Cl or ClO4, n = 2, y = 0–4) and Ni(II) (X = Cl, n = 2, y = 4) and [Cu(L)2]Cl2 · H2O. The molar conductance data reveal that all the metal chelates are 3 : 1 electrolytes (for Cr(III) and Fe(III) complexes) and 2 : 1 (for the remaining complexes). IR spectra show that OPZ coordinates to the metal ions as neutral bidentate with ON donor sites of the pyridine–N and sulphone-O. The magnetic and solid reflectance spectra indicate octahedral (FeCl3, CoCl2, CoClO4 and NiCl2), square planar [Cu(II)] and tetrahedral [Mn(II), Cr(III), NiClO4 and Zn(II)] structures. The thermal behavior of these chelates using thermogravimetric and differential thermal analyses (TGA and DTA) techniques indicate the hydrated complexes lose water of hydration followed immediately by decomposition of the anions and ligand molecules in the successive overlapping OPZ and its metal complexes are screened for antibacterial activity against Escherichia coli, Staphylococcus aureus, Aspergillus flavus and fungi (Candida albicans). The activity data show the metal complexes to be more potent/antibacterial than the parent OPZ ligand against one or more bacterial species.  相似文献   

16.
Summary Bivalent metal complexes ofp-chloro-,p-methyl- andp-methoxybenzoylhydrazone oximes (H2BMCB, H2BMMB or H2BMTB=H2L), [M(H2L)Cl2]. nH2O (M=ZnII, CdII or HgII, n=0 or 1; [M(H2L)Cl2] (M=ZnII or CdII); [M(HL)2(H2O)n]. YH2O (M=CoII, CuII, ZnII or UVIO2, n=0–2); [Ni(H2BMCB)(H2O)3]Cl2, [Ni(BMMB)(H2O)]2 and [Ni(BMTB)(H2O)]2, were synthesized by conventional physical and chemical measurements. I.r. spectra show that the ligands are bidentate or tridentate. Spectral, magnetic and molecular weight measurements suggest that cobalt(II) and nickel(II) have monomeric octahedral geometry when derived from H2BMCB, a dimeric square planar geometry for nickel(II) and monomeric square planar geometry for cobalt(II) for those isolated from H2BMMB or H2BMTB. Also, a monomeric distorted octahedral structure is proposed for copper(II) complexes derived from the ligands under investigation.  相似文献   

17.
Acrylamide complexes of metal nitrates: [M(O‐OC(NH2)CHCH2)n(H2O)m][NO3]2 (M = Co( 1 ), Ni( 2 ) (n = 6 and m = 0) and Zn( 3 ) (n = 4 and m = 2)) have been determined by using single crystal X‐ray diffraction analysis. All complexes crystallize in the triclinic space group . The structures of 1 and 2 represent octahedral species [M(AAm)6]2+ (AAm = O‐OC(NH2)CHCH2 and M = Co or Ni) and uncoordinated nitrate ions. The structure of 3 involves the octahedral cation [Zn(AAm)4(H2O)2]2+ in which the Zn2+ environment includes oxygen atoms of four acrylamide and two water molecules that are stabilized using ionic nitrate ions. The observations of the solid‐state IR spectroscopic vibrational frequencies of these acrylamide complexes are in agreement with the crystal structures.  相似文献   

18.
A series of complexes of type [ML(CH3COO)(OH2)2] (M: Co, Ni; HL: 2-[(E)-1H-1,2,4-triazol-3-ylimino)methyl]phenol)) and [M2L2(CH3COO)2(OH2)n] (M: Cu, n = 2; M: Zn, n = 0) were synthesised by template condensation. The compounds were characterised with microanalytical, ESI–MS, IR, electronic, EPR spectra and magnetic data at room temperature. Based on the IR and ESI–MS spectra, a dinuclear structure with the acetate as bridge was proposed for Cu(II) and Zn(II) complexes. The dinuclear structure of Cu(II) complex is also consistent with both magnetic behaviour and EPR spectrum. The thermal analyses have evidenced processes as water elimination, acetate decomposition, as well as oxidative degradation of the Schiff base. The final decomposition product was the most stable metal oxide as indicated by powder X-ray diffraction. The cobalt and copper compounds exhibited a broad spectrum of antibacterial activity towards both planktonic and biofilm-embedded cells. The complexes exhibit a low cytotoxicity except for Cu(II) species that induces the early apoptosis for the HEp 2 cells.  相似文献   

19.
The reaction of the lithium salts of N‐phosphorylated thioureas RC(S)NHP(O)(OiPr)2 (R = 1‐aza‐15‐crown‐5, HL I ; 1‐aza‐12‐crown‐4, HL II ) with Co(II) or Ni(II) leads to the chelate complexes [ ML I,II 2 ]. The metal center is found in a tetrahedral ([ CoL I,II 2 ]) or square planar ([ NiL I,II 2 ]) O2S2 environment formed by the CS sulfur atoms and the PO oxygen atoms of two deprotonated ligands L . The molecular structure of [ CoL I 2 ] was elucidated by X‐ray diffraction and the extraction properties of HL I,II and [ ML I,II 2 ] toward alkali metal and ammonium picrates were investigated. © 2010 Wiley Periodicals, Inc. Heteroatom Chem 21:486–491, 2010; View this article online at wileyonlinelibrary.com . DOI 10.1002/hc.20637  相似文献   

20.
Piperanol thiosemicarbazone (HL) has been interacted with Ag+, Co(II), Ni(II) or Cu(II) binary to produce [Ag(HL)]EtOH · NO3, [Ag2(L)(H2O)2]NO3, [Co(L)3], [Cu(L)(H2O)3(OAc)]H2O or [Ni(L)2] and template with Ag+ to form [Cu2Ag2(L)2(OH)2(H2O)4]NO3 and [NiAg(L)2(H2O)2]NO3. The prepared complexes are characterized by microanalysis, thermal, magnetic and spectral (IR, 1H NMR, ESR and electronic) studies. Ag+ plays an important role in the complex formation. The variation in coordination may be due to the presence of two different metal ions and the preparation conditions. The outside nitrate is investigated by IR spectra. The outer sphere solvents are detected by IR and thermal analysis. Ni(II) complexes are found diamagnetic having a square-planar geometry. Cu(II) is reduced by the ligand to Cu(I). The cobalt complex is found diamagnetic confirming an air oxidation of Co(II) to Co(III) having a low spin octahedral geometry. The ligand and its metal complexes are found reducing agents which decolorized KMnO4 solution in 2N H2SO4. CoNS and NiNS are the residual parts in the thermal decomposition of [Co(L)3] and [Ni(L)2].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号