共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to improve the permeation and adsorption properties of graphene oxide, heteroatoms and deep eutectic solvent were introduced in this study. After being modified, the structural properties of graphene oxide were improved and the materials were applied to the determination of myricetin and rutin in tea sample by pipette‐tip solid‐phase extraction method. The materials were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X‐Ray diffractomer, energy dispersive spectroscopy, atomic force microscope, and specific surface area by Brunauer–Emmett–Teller N2 adsorption desorption analysis. Meanwhile, they were tested by static and dynamic adsorption. The result showed that the materials after modifying had better adsorption amount for myricetin and rutin than graphene oxide. The calibration graphs of myricetin and rutin in MeOH were linear over 0.10–500.00 µg/mL, and the limits of detection and quantification were in the range of 0.00546–0.0182 µg/mL and 0.00741–0.0247 µg/mL, respectively. A reliable analytical method was developed for recognition targets in tea sample by DES modified nitrogen‐doped graphene oxide with satisfactory extraction recoveries (myricetin 99.77%, rutin 98.14%). It was potential for the rapid purification of myricetin and rutin in tea sample combined with the pipette‐tip solid‐phase extraction. 相似文献
2.
Yuan Li Juan Zha Xi Ci Dan Qie Gen Liao Zhang Da Wen Luo Lin Guang 《Journal of separation science》2020,43(5):905-911
Surfactant cetyltrimethylammonium bromide enhanced molybdenum disulfide was used as an adsorbent in pipette‐tip solid‐phase extraction for the pretreatment of sulfonamides in environmental water samples. The factors affecting the extraction recoveries of the analytes, including the sample pH value, amount of sorbent, type and volume of eluent solution, and salt concentration were optimized. This pipette‐tip solid‐phase extraction method demonstrated good linearity (0.05–10.0 µg/L) with a coefficient of determination of 0.9984–0.9996, limit of detection (0.2–0.4 ng/L) and limit of quantitation (0.5–1.0 ng/L), good analyte recoveries (76–91), and acceptable limit of quantitation (<10%) under the optimized conditions. These results indicated that the proposed method was a good tool for monitoring sulfonamides in environmental water samples. 相似文献
3.
In this research study, an efficient solid‐phase extraction procedure based on a new organometallic, effective, eco‐friendly and bio‐degradable nanoadsorbent was firstly introduced for influential pre‐concentration of Cu(II), Zn(II), Pb(II), Cd(II) and Mn(II) ions from food and water samples followed by flame atomic absorption spectrophotometric determination. This safe adsorbent consisted of silica nanoparticles chemically functionalized with di‐ethylen tri‐amine (SiO2@NH2NPs); easily prepared via an effective and simple approach. Characterization of SiO2@NH2NPs was subsequently implemented via SEM, FT‐IR and XRD; certifying high quality of the modified nanoadsorbent in terms of size, shape and surface functional groups. The effects of the main factors on the extraction efficiency were then optimized. Efficient extraction of the analytes of interest at neutral media accompanied with the aid of a bio‐compatible organometallic nanoadsorbent can be considered as valuable advantages of the proposed approach. In the optimum conditions, calibration graphs were linear in the range of 4–700 μg l?1, with higher correlation coefficients than 0.997 and limits of detection of 1.45–4.10 ng ml?1. The enrichment factor values were found to be in the span of 120–400. The resultant extraction recovery values were satisfactory; possessing the proper relative standard deviation (%, n = 5) values of 2.05–4.28%. 相似文献
4.
Graphene‐Fe3O4 as a magnetic solid‐phase extraction sorbent coupled to capillary electrophoresis for the determination of sulfonamides in milk 下载免费PDF全文
Zhaoqian Li Yazhen Li Mengyu Qi Shuxian Zhong Weiping Wang Ai‐Jun Wang Jianrong Chen 《Journal of separation science》2016,39(19):3818-3826
Graphene‐Fe3O4 nanoparticles were prepared using one‐step solvothermal method and characterized by X‐ray diffraction, FTIR spectroscopy, scanning electron microscopy, and vibrating sample magnetometry. The results demonstrated that Fe3O4 nanoparticles were homogeneously anchored on graphene nanosheets. The as‐synthesized graphene‐Fe3O4 nanoparticles were employed as sorbent for magnetic solid‐phase extraction of sulfonamides in milk prior to capillary electrophoresis analysis. The optimal capillary electrophoresis conditions were as follows: 60 mmol/L Na2HPO4 containing 2 mmol/L ethylenediaminetetraacetic acid disodium salt and 24% v/v methanol as running buffer, separation voltage of 14 kV, and detection wavelength of 270 nm. The parameters affecting extraction efficiency including desorption solution, the amount of graphene‐Fe3O4 nanoparticles, extraction time, and sample pH were investigated in detail. Under the optimal conditions, good linearity (5–200 μg/L) with correlation coefficients ≥0.9910 was obtained. The limits of detection were 0.89–2.31 μg/L. The relative standard deviations for intraday and interday analyses were 4.9–8.5 and 4.0–9.0%, respectively. The proposed method was successfully applied to the analysis of sulfonamides in milk samples with recoveries ranging from 62.7 to 104.8% and relative standard deviations less than 10.2%. 相似文献
5.
《Journal of separation science》2018,41(18):3508-3514
An acryloyl β‐cyclodextrin‐silica hybrid monolithic column for pipette tip solid‐phase extraction and high‐performance liquid chromatography determination of methyl parathion and fenthion has been prepared through a sol–gel polymerization method. The synthesis conditions, including the volume of cross‐linker and the ratio of inorganic solution to organic solution, were optimized. The prepared monolithic column was characterized by thermogravimetric analysis, scanning electron microscopy, and Fourier transform infrared spectroscopy. The eluent type, volume and flow rate, sample volume, flow rate, acidity, and ionic strength were optimized in detail. Under the optimized conditions, a simple and sensitive pipette tip solid‐phase extraction with high‐performance liquid chromatography method was developed for the determination of methyl parathion and fenthion in lettuce. The method yielded a linear calibration curve in the concentration ranges of 15–400 μg/kg for methyl parathion and 20–400 μg/kg for fenthion with correlation coefficients of above 0.9957. The limits of detection were 4.5 μg/kg for methyl parathion and 6.0 μg/kg for fenthion, respectively. The recoveries of methyl parathion and fenthion spiked in lettuce ranged from 96.0 to 104.2% with relative standard deviations less than 8.4%. 相似文献
6.
Chaoran Liu Xinya Liu Philip J. Marriott Heng Qian Zilin Meng Zhirong Yang Runhua Lu Haixiang Gao Wenfeng Zhou 《Journal of separation science》2019,42(8):1610-1619
In this work, a method for the analysis of benzoylurea insecticides, including hexaflumuron, flufenoxuron, lufenuron and chlorfluazuron, in tea samples by high‐performance liquid chromatography with Fe3O4‐hyperbranched polyester nanocomposite as the adsorbent for magnetic solid‐phase extraction was developed. The magnetic nanocomposite was prepared and characterized by infrared spectroscopy, vibrating sample magnetometry, and scanning electron microscopy. The as‐prepared nanocomposite was used as a sorbent for the extraction and preconcentration of pesticide residues in tea samples. The extraction and desorption conditions, including mass ratios of raw materials, amount of sorbent, pH value, extraction time, and desorption time, were investigated. Under the final conditions chosen for the analysis, good linearity was obtained for all the tested compounds, with R2 values of at least 0.9979. The limits of detection were determined in the range of 0.15–0.3 μg/L. The recovery obtained from the analysis of tea samples with various spiked concentrations was between 90.7 and 98.4%, with relative standard deviations (n = 4) lower than 4.1%. Furthermore, the present approach was successfully applied to the quantitative determination of residues of benzoylurea insecticides in real samples. 相似文献
7.
Sayyed Hossein Hashemi Morteza Ziyaadini Massoud Kaykhaii Ahmad Jamali Keikha Nasrin Naruie 《Journal of separation science》2020,43(2):505-513
By synthesizing a molecular imprinted polymer as an efficient adsorbent, ciprofloxacin was micro‐extracted from seawater, human blood plasma and tablet samples by pipette‐tip micro solid phase extraction and determined spectrophotometrically. Response surface methodology was applied with central composite design to build a model based on factors affecting on microextraction of ciprofloxacin; including volume of eluent solvent, number of extraction cycles, number of elution cycles, and pH of sample. Other factors that affect extraction efficiency, such as type of eluent solvent, volume of sample, type, and amount of salt were optimized with one‐variable‐at‐a‐time method. Under optimum extraction condition, pH of sample solution was 7.0, volume of eluent solvent (methanol) was 200 µL, volume of sample solution was 10 mL, and the number of extraction and elution cycles was five and seven, respectively, amount of Na2SO4 (as salt) and MIP (as sorbent) were optimized at 150 and 2 mg, respectively. The linear range of the suggested method under optimum extraction factors was 5–150 µg/L with a limit of detection of 1.50 µg/L for the analyte. Reproducibility of the method (as relative standard deviation) was better than 7%. 相似文献
8.
In this work, a carbon nanosphere decorated by Fe3O4 nanoparticles was prepared, characterized and used as the magnetic adsorbent. Eight commonly used chiral triazole fungicides, including penconazole, uniconazole, paclobutrazol, triazolone, tebuconazole, hexaconazole, triticonazole and epoxiconazole were extracted from two environmental water samples (river water and lake water) by magnetic solid‐phase extraction, followed by the enantiomeric analysis on a Chiralpark IC column coupled with a triple quadrupole mass spectrometry to evaluate their possible stereoselective degradation occurring in the water samples. The possible factors affecting the extraction performance, such as amount of used adsorbents, pH and ionic strength of water solution, types and volumes of desorption solvents were systematically investigated. Under the optimum conditions, extraction yields of eight triazole fungicides were above 80% and the concentration factors were as high as 1000. Method detection and quantification limits for the enantiomers of eight triazole fungicides were in the range of 0.56–6.95 ng/L. Satisfactory accuracy (relative recovery 77.8–93.5%), good intraday precision (RSD 4.3–9.8%) and interday precision (RSD 3.1–7.9%) were also obtained. The developed method provided the simplicity of operation, rapidity and high enrichment factor, which can be used to monitor and evaluate the behavior of the individual enantiomer of chiral triazole fungicides. 相似文献
9.
《Journal of separation science》2018,41(8):1856-1863
In‐syringe solid‐phase extraction is a promising sample pretreatment method for the on‐site sampling of water samples because of its outstanding advantages of portability, simple operation, short extraction time, and low cost. In this work, a novel in‐syringe solid‐phase extraction device using metal–organic frameworks as the adsorbent was fabricated for the on‐site sampling of polycyclic aromatic hydrocarbons from environmental waters. Trace polycyclic aromatic hydrocarbons were effectively extracted through the self‐made device followed by gas chromatography with mass spectrometry analysis. Owing to the excellent adsorption performance of metal–organic frameworks, the analytes could be completely adsorbed during one adsorption cycle, thus effectively shortening the extraction time. Moreover, the adsorbed analytes could remain stable on the device for at least 7 days, revealing the potential of the self‐made device for on‐site sampling of degradable compounds in remote regions. The limit of detection ranged from 0.20 to 1.9 ng/L under the optimum conditions. Satisfactory recoveries varying from 84.4 to 104.5% and relative standard deviations below 9.7% were obtained in real samples analysis. The results of this study promote the application of metal–organic frameworks in sample preparation and demonstrate the great potential of in‐syringe solid‐phase extraction for the on‐site sampling of trace contaminants in environmental waters. 相似文献
10.
《Biomedical chromatography : BMC》2018,32(2)
Cefexime is a useful antibiotic that can be prescribed to treat bacterial infections. Nanoparticles have been widely marketed as a universal solution among scientists. Many studies have been performed to modify nanoparticles to make them functional as extraction and pre‐concentration agents and drug carriers. Temperature‐sensitive polymers belong to a group of substances that undergo a major change in their physical features in response to temperature. Recently developed polymers can be used in many different areas, including modification of nanoparticles. In order to modify this nanoparticle, grafting copolymerization of Fe3O4 nanoparticles was performed using poly (N‐vinylcaprolactam) and 3‐allyloxy‐1,2‐propanediol. The optimum conditions for pre‐concentration of cefexime were studied. Under these optimum conditions, extraction recovery of biological samples in the range of 71–89% was obtained. The limit of detection and precision of proposed method were 4.5 × 10−4 μg mL−1 and <4.11% (relative standard deviation), respectively. Based on the results from analysis of cefexime, in biological samples using the proposed method, the ability of this method to extract and pre‐concentrate cefexime was confirmed. Also, satisfactory results from an in vitro study on drug release in simulated intestine media were obtained. 相似文献
11.
《Journal of separation science》2017,40(14):2933-2940
The extraction adsorbent was fabricated by immobilizing the highly specific recognition and binding of aptamer onto the surface of Fe3O4 magnetic nanoparticles, which not only acted as recognition elements to recognize and capture the target molecule berberine from the extract of Cortex phellodendri , but also could favor the rapid separation and purification of the bound berberine by using an external magnet. The developed solid‐phase extraction method in this work was useful for the selective extraction and determination of berberine in Cortex phellodendri extracts. Various conditions such as the amount of aptamer‐functionalized Fe3O4 magnetic nanoparticles, extraction time, temperature, pH value, Mg2+ concentration, elution time and solvent were optimized for the solid‐phase extraction of berberine. Under optimal conditions, the purity of berberine extracted from Cortex phellodendri was as high as 98.7% compared with that of 4.85% in the extract, indicating that aptamer‐functionalized Fe3O4 magnetic nanoparticles‐based solid‐phase extraction method was very effective for berberine enrichment and separation from a complex herb extract. The applicability and reliability of the developed solid‐phase extraction method were demonstrated by separating berberine from nine different concentrations of one Cortex phellodendri extract. The relative recoveries of the spiked solutions of all the samples were between 95.4 and 111.3%, with relative standard deviations ranging between 0.57 and 1.85%. 相似文献
12.
Efficient sample preparation method based on solvent‐assisted dispersive solid‐phase extraction for the trace detection of butachlor in urine and waste water samples 下载免费PDF全文
Zolfaghar Aladaghlo Alireza Fakhari Mohammad Behbahani 《Journal of separation science》2016,39(19):3798-3805
In this work, an efficient sample preparation method termed solvent‐assisted dispersive solid‐phase extraction was applied. The used sample preparation method was based on the dispersion of the sorbent (benzophenone) into the aqueous sample to maximize the interaction surface. In this approach, the dispersion of the sorbent at a very low milligram level was achieved by inserting a solution of the sorbent and disperser solvent into the aqueous sample. The cloudy solution created from the dispersion of the sorbent in the bulk aqueous sample. After pre‐concentration of the butachlor, the cloudy solution was centrifuged and butachlor in the sediment phase dissolved in ethanol and determined by gas chromatography with flame ionization detection. Under the optimized conditions (solution pH = 7.0, sorbent: benzophenone, 2%, disperser solvent: ethanol, 500 μL, centrifuged at 4000 rpm for 3 min), the method detection limit for butachlor was 2, 3 and 3 μg/L for distilled water, waste water, and urine sample, respectively. Furthermore, the preconcentration factor was 198.8, 175.0, and 174.2 in distilled water, waste water, and urine sample, respectively. Solvent‐assisted dispersive solid‐phase extraction was successfully used for the trace monitoring of butachlor in urine and waste water samples. 相似文献
13.
《Journal of separation science》2018,41(7):1618-1624
This work presents a new extraction material, namely, Q‐100, based on hypercrosslinked magnetic particles, which was tested in dispersive solid‐phase extraction for a group of sweeteners from environmental samples. The hypercrosslinked Q‐100 magnetic particles had the advantage of suitable pore size distribution and high surface area, and showed good retention behavior toward sweeteners. Different dispersive solid‐phase extraction parameters such as amount of magnetic particles or extraction time were optimized. Under optimum conditions, Q‐100 showed suitable apparent recovery, ranging in the case of river water sample from 21 to 88% for all the sweeteners, except for alitame (12%). The validated method based on dispersive solid‐phase extraction using Q‐100 followed by liquid chromatography with tandem mass spectrometry provided good linearity and limits of quantification between 0.01 and 0.1 μg/L. The method was applied to analyze samples from river water and effluent wastewater, and four sweeteners (acesulfame, saccharin, cyclamate, and sucralose) were found in both types of sample. 相似文献
14.
Magnetic solid‐phase extraction of polycyclic aromatic hydrocarbons in water samples by Fe3O4@polypyrrole/carbon nanotubes 下载免费PDF全文
Abbas Abdar Ali Sarafraz‐Yazdi Amirhassan Amiri Navid Bagheri 《Journal of separation science》2016,39(14):2746-2753
A magnetic solid‐phase extraction method coupled with gas chromatography was proposed for the determination of polycyclic aromatic hydrocarbons in the environmental water samples. The magnetic adsorbent was prepared by incorporating Fe3O4 nanoparticles, multi‐walled carbon nanotubes, and polypyrrole. The main factors affecting the extraction efficiency including the amount of the sorbents, desorption conditions, extraction time, salt concentration, and sample solution pH were investigated and optimized. Under the optimum conditions, good linearity was obtained within the range of 0.03?100 ng/mL for all analytes, with correlation coefficients ranging from 0.9942 to 0.9973. The method detection limits (S/N = 3) were in the range of 0.01–0.04 ng/mL and the limits of quantification (S/N = 10) were 0.03–0.1 ng/mL. Repeatability of the method was assessed through five consecutive extractions of independently prepared solutions at concentrations of 0.1, 10, and 100 ng/mL of the compounds. The observed repeatability ranged 3.4–10.9% depending of the compound considered. The proposed method was successfully applied in the analysis of PAHs in environmental samples (tap, well, river, and wastewater). The recoveries of the method ranged between 93.4 and 99.0%. The procedure proved to be efficient and environmentally friendly. 相似文献
15.
《Journal of separation science》2017,40(9):1887-1895
A green and novel deep eutectic solvent modified graphene was prepared and used as a neutral adsorbent for the rapid determination of sulfamerazine in a river water sample by pipette‐tip solid‐phase extraction. Compared with conventional graphene, deep eutectic solvent modified graphene can change the surface of graphene with wrinkled structure and higher selective extraction ability. The properties of deep eutectic solvent modified graphene and graphene were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis. Static adsorption showed deep eutectic solvent modified graphene had a higher adsorption ability (18.62 mg/g) than graphene. Under the optimum conditions, factors such as kinds of washing solvents and elution solvents and volume of elution solvent were evaluated. The limits of detection and quantification were 0.01 and 0.03 μg/mL, respectively. The method recoveries of sulfamerazine were in the range of 91.01–96.82% with associated intraday relative standard deviations ranging from 1.63 to 3.46% and interday relative standard deviations ranging from 0.68 to 3.84%. Deep eutectic solvent modified graphene showed satisfactory results (recovery was 95.38%) and potential for rapid purification of sulfamerazine in river water sample in combination with the pipette‐tip solid‐phase extraction method. 相似文献
16.
《Journal of separation science》2017,40(20):3938-3945
Sulfonated poly(styrene‐divinylbenzene) modified with five kinds of amine functional groups was applied to the determination of carbendazim in apple samples with a pipette‐tip solid‐phase extraction method. The structures of the polymers were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis. Five different modifications of the solid‐phase extraction sorbent based on sulfonated poly(styrene‐divinylbenzene) were tested under static and pipette‐tip solid‐phase extraction conditions. The polymer modified with p‐methoxyaniline showed the best recognition capacity and adsorption amount for carbendazim. Under the optimum conditions, 3.00 mg of the adsorbent, 1.00 mL of ethyl acetate as washing solvent, and 1.00 mL of ammonia/acetonitrile (5:95, v/v) as elution solvent were used in the pretreatment procedure of apple samples. The calibration graphs of carbendazim in methanol were linear over 5.00–200.00 μg/mL, and the limits of detection and quantification were 0.01 and 0.03 μg/mL, respectively. The method recoveries of carbendazim were in the range of 91.31–98.13% with associated intraday relative standard deviations of 0.76–2.13% and interday relative standard deviations of 1.10–1.85%. Sulfonated poly(styrene‐divinylbenzene) modified with p‐methoxyaniline showed satisfactory results (recovery: 97.96%) and potential for the rapid purification of carbendazim in apple samples combined with the pipette‐tip solid‐phase extraction. 相似文献
17.
《Journal of separation science》2018,41(17):3441-3448
Magnetic CoFe2O4‐embedded porous graphitic carbon nanocomposites were prepared through a facile solid‐phase thermal reaction with NaCl as a template. The material was applied in the magnetic solid‐phase extraction process coupled with high performance liquid chromatography with a diode array detector to detect the trace fenpropathrin, cyhalothrin, S‐fenvalerate, and bifenthrin in different water samples. The synthesis conditions of nanomaterial including glucose concentration and calcination time on extraction performance for pyrethroid pesticides have been investigated. Different magnetic solid‐phase extraction parameters have been studied, such as the nanomaterial amount, solution pH, eluent types, adsorption time, and the reusability. Under the optimum conditions, good recoveries (80.2–110.9%) were achieved with relative standard deviations of 0.2–5.8%. There are probably hydrophobic interactions and dipole–dipole attractions between nanocomposites and the analytes. 相似文献
18.
《Journal of separation science》2018,41(5):1129-1137
We adopted a facile hydrofluoric acid‐free hydro‐/solvothermal method for the preparation of four magnetic iron(III)‐based framework composites (MIL‐101@Fe3O4‐COOH, MIL‐101‐NH2@Fe3O4‐COOH, MIL‐53@Fe3O4‐COOH, and MIL‐53‐NH2@Fe3O4‐COOH). The obtained four magnetic iron(III)‐based framework composites were applied to magnetic separation and enrichment of the fungicides (prochloraz, myclobutanil, tebuconazole, and iprodione) from environmental samples before high‐performance liquid chromatographic analysis. MIL‐101‐NH2@Fe3O4‐COOH showed more remarkable pre‐concentration ability for the fungicides as compared to the other three magnetic iron(III)‐based framework composites. The extraction parameters affecting enrichment efficiency including extraction time, sample pH, elution time, and the desorption solvent were investigated and optimized. Under the optimized conditions, the standard curve of correlation coefficients were all above 0.991, the limits of detection were 0.04–0.4 μg/L, and the relative standard deviations were below 10.2%. The recoveries of two real water samples ranged from 71.1–99.1% at the low spiking level (30 μg/L). Therefore, the MIL‐101‐NH2@Fe3O4‐COOH composites are attractive for the rapid and efficient extraction of fungicides from environmental water samples. 相似文献
19.
Solid‐phase membrane micro‐tip extraction (SPMMTE) and capillary electrophoresis (CE) methods were developed and validated for analysis of chloramphenicol in human plasma and urine samples. Iron composite nanoparticles were prepared using green technology. CE was carried out using a silica capillary (60 cm × 50 μm i.d.), phosphate buffer (50 mm , 8.0 pH)–acetonitrile (95:5, v/v) as the background electrolyte, 10 kV voltage, 280 nm detection, 20 s injection time and 27 ± 1°C temperature. Frusemide was used as an internal standard. The values of migration time, electrophoretic mobility, electrophoretic velocity and theoretical plates of chloramphenicol were 12.254 min, 4.44 × 10, 7.41 × 10 and 11,227. The limits of detection and quantitation of chloramphenicol were 0.1 and 1.0 μg/mL. Recovery of chloramphenicol in the standard solution was 95%. Solid‐phase membrane micro‐tip extraction and capillary electrophoresis methods may be used to analyze chloramphenicol in human plasma and urine samples of any patient. 相似文献
20.
《Journal of separation science》2018,41(7):1539-1547
In this work, a magnetic β‐cyclodextrin polymer was successfully prepared and used as an adsorbent for the magnetic solid‐phase extraction of six benzoylurea insecticides (diflubenzuron, triflumuron, hexaflumuron, teflubenzuron, flufenoxuron, and chlorfluazuron) from honey, tomato, and environmental water samples. The influence of the main experimental conditions on the extraction was studied. Under the optimized conditions, the β‐cyclodextrin polymer@Fe3O4 showed an excellent extraction performance for the benzoylurea insecticides. A good linearity was obtained for the analytes in the range of 3.0–800 ng/g for honey samples, 0.3–160 ng/g for tomato samples, and 0.1–80.0 ng/mL for water samples, with the correlation coefficients above 0.9998. Satisfactory repeatabilities were achieved, with the relative standard deviations less than 5.7%. The limits of detection (S/N = 3) of the method for the benzoylurea insecticides were 0.2–0.8 ng/g for honey samples, 0.04–0.10 ng/g for tomato samples, and 0.02–0.05 ng /mL for water samples. The method was successfully used for the determination of the six benzoylurea insecticides residues in honey, tomato, and environmental water samples with a satisfactory result. 相似文献