首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zinc oxide‐decorated superparamagnetic silica attached to graphene oxide (Fe3O4/SiO2/PTS‐GO‐ZnO), as a novel nanocomposite, was designed, and its core‐shell structure was appropriately characterized by different spectroscopy or microscopy methods and thermal techniques as well as measuring of its porosity and magnetic properties. The catalytic activity of Fe3O4/SiO2/PTS‐GO‐ZnO, as a reusable heterogeneous catalyst, was investigated for efficient one‐pot multi‐component synthesis of medicinally important functionalized 2‐amino‐6‐(2‐oxo‐2H‐chromen‐3‐yl)‐4‐arylnicotinonitrile derivatives. The significant features of the present procedure are mild reaction conditions, low loading of the catalyst, high to quantitative yields of the desired products, avoiding the use of toxic heavy metals or solvents, simple isolation and purification of the products, and stability as well as reusability of the catalyst after at least six consecutive runs.  相似文献   

2.
In this study, Fe3O4 nanoparticles were functionalized with cellulose, and then hybridized with cobalt (II)-based metal-organic framework (Co-MOF) containing carboxylate and imidazole functionalities. FTIR, XRD, FE-SEM, TEM, BET, EDX, VSM and STA analyses were used to characterize the synthesized samples. The resultant Fe3O4/cellulose/Co-MOF nanocomposite was applied efficiently as a powerful and economic heterogeneous catalyst in the condensation of a variety of different aromatic aldehydes with malononitrile under solvent-free conditions at room temperature for 10 min and offered the corresponding coupling products in high yields. The catalyst could be straightforwardly separated by a magnet from the reaction mixture and reused without a noteworthy drop in catalytic activity at least five times. The use of Fe3O4/cellulose/Co-MOF catalyst outcomes under mild reaction conditions in very short reaction time, outstanding catalytic activity, high recyclability and an easy work-up process for Knoevenagel condensation.  相似文献   

3.
A highly porous metal‐organic framework, MIL‐101(Fe), was prepared by a solvothermal method in the presence of amino‐modified Fe3O4@SiO2 nanoparticles, in order to achieve Fe3O4/MIL‐101(Fe) nanocomposite, which was characterized by XRD, FT‐IR, SEM, TEM, BET, and VSM. This hybrid magnetic nanocomposite was employed as heterogeneous catalyst for α‐amino nitriles synthesis through three‐component condensation reaction of aldehydes (ketones), amines, and trimethylsilyl cyanide in EtOH, at room temperature. The recoverability and reusability was admitted for the heterogeneous magnetic catalyst; no significant reduction of catalytic activity was observed even after five consecutive reaction cycles.  相似文献   

4.
A core–shell Fe3O4@silica magnetic nanocomposite functionalized with 3-amino-5-mercapto-1,2,4-triazole (Fe3O4/SiO2/PTS/AMTA) was prepared using Fe3O4 with silica layer, and its surface was modified with 3-amino-5-mercapto-1,2,4-triazole. The novel synthesized magnetite nanocomposite was characterized using various techniques. The catalytic activity of Fe3O4/SiO2/PTS/AMTA was demonstrated in the synthesis of bis(indolyl)methane derivatives under solvent-free conditions. Some of the bis(indolyl)methane derivatives were synthesized through one-pot, three-component reaction of 1 mol of various benzaldehydes or ketones with 2 mol of indole in the presence of Fe3O4/SiO2/PTS/AMTA in good to excellent isolated yields. In addition, the catalyst could be recovered and used for several reaction runs without loss of catalytic activity. The stability of recycled catalyst was investigated. This method has some advantages including experimental simplicity, good to excellent yields, solvent-free conditions and stability and reusability of the catalyst.  相似文献   

5.
Immobilized sulfuric acid on magnetic Fe3O4 nanoparticles (Fe3O4 MNPs‐OSO3H) as a new solid acid nanocomposite was successfully synthesized and its catalytic activity in a series of condensation reactions was studied. High catalytic activity, simple separation from reaction mixture by an external magnet and good reusability are several eco‐friendly advantages of this catalytic system. It is noteworthy that this catalytic system is applicable to a wide range of spectrum of aromatic aldehydes, and the desired products were obtained in good to excellent yields under mild conditions. The use of ecofriendly solvents makes also this synthetic protocol ideal and fascinating from the environmental point of view.  相似文献   

6.
An amino‐functionalized silica‐coated Fe3O4 nanocomposite (Fe3O4@SiO2/APTS) was synthesized. The Fe3O4@SiO2 microspheres possessed a well‐defined core–shell structure, uniform sizes and high magnetization. An immobilized ruthenium nanoparticle catalyst (Fe3O4@SiO2/APTS/Ru) was obtained after coordination and reduction of Ru3+ on the Fe3O4@SiO2/APTS nanocomposite. The Ru nanoparticles were not only ultra‐small with nearly monodisperse sizes but also had strong affinity with the surface of Fe3O4@SiO2/APTS. The obtained catalyst exhibited excellent catalytic performance for the hydrogenation of a variety of aromatic nitro compounds, even at room temperature. Moreover, Fe3O4@SiO2/APTS/Ru was easily recovered using a magnetic field and directly reused for at least five cycles without significant loss of its activity.  相似文献   

7.
A magnetically separable graphitic carbon nitride nanocomposite (Fe3O4/g‐C3N4) as a catalyst for the three‐component condensation reactions of carbonyl compounds, amines and trimethylsilylcyanide was thoroughly investigated. The reaction of these three components was found to be efficient, economical and green and took place in the presence of a catalytic amount of the magnetically separable catalyst to yield the corresponding α‐aminonitriles in good to excellent yields. The prepared nanocomposite was characterized using scanning electron microscopy and energy‐dispersive X‐ray and Fourier transform infrared spectroscopies. The nanocomposite was also found to be reusable could be recovered easily and reused several times without distinct deterioration in its catalytic activity.  相似文献   

8.
In this work, the use of Fe3O4/geraphene oxide nanocomposite as an efficient catalyst for the synthesis of 5-sulfanyltetrazole derivatives of indoles, pyrroles, and 5-alkyl sulfanyltetrazoles is described. These compounds are readily obtained by the reaction of the starting heterocycles indoles, N-aryl pyrroles, alkyl thiocyanates, and trimethylsilyl azide in good to excellent yields. Moreover, Fe3O4/GO nanocomposite could be easily separated from the reaction mixtures by an external permanent magnet and reused at least six times continuously without significant reduction in the product yield and its catalytic activity.  相似文献   

9.
Nanometer‐sized magnetic stirring bars containing Pd nanoparticles (denoted as Fe3O4‐NC‐PZS‐Pd) for heterogeneous catalysis in microscopic system were prepared through a facile two‐step process. In the hydrogenation of styrene, Fe3O4‐NC‐PZS‐Pd showed an activity similar to that of the commercial Pd/C catalyst, but much better stability. In microscopic catalytic systems, Fe3O4‐NC‐PZS‐Pd can effectively stir the reaction solution within microdrops to accelerate mass transfer, and displays far better catalytic activity than the commercial Pd/C for the hydrogenation of methylene blue in an array of microdroplets. These results suggested that the Fe3O4‐NC‐PZS‐Pd could be used as nanoscale stirring bars in nanoreactors.  相似文献   

10.
Surface modification of Fe3O4 nanoparticles with triethoxyethylcyanide groups was used for the immobilization of palladium nanoparticles to produce Fe3O4/Ethyl‐CN/Pd. The catalyst was characterized using Fourier transform infrared, wavelength‐dispersive X‐ray, energy‐dispersive X‐ray and X‐ray photoelectron spectroscopies, field‐emission scanning electron and transmission electron microscopies, and X‐ray diffraction, vibrating sample magnetometry and inductively coupled plasma analyses. In this fabrication, cyano groups played an important role as a capping agent. The catalytic behaviour of Fe3O4/Ethyl‐CN/Pd nanoparticles was measured in the Suzuki cross‐coupling reaction of various aryl halides (Ar? I, Ar? Br, Ar? Cl) with phenylboronic acid in aqueous phase at room temperature. Interestingly, the novel catalyst could be recovered in a facile manner from the reaction mixture by applying an external magnet device and recycled seven times without any significant loss in activity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
We report a new strategy to immobilize a bromine source on the surface of magnetic Fe3O4 nanoparticles (Fe3O4 MNPs-DETA/Benzyl-Br3) leading to a magnetically recoverable catalyst, which exhibits high catalytic efficiency in oxidative coupling of thiols to the disulfides (89–98%). The Fe3O4 MNPs-DETA/Benzyl-Br3 catalyst was fabricated by anchoring 3-chloropropyltrimethoxysilane (CPTMS) on magnetic Fe3O4 nanoparticles, followed with N-benzylation and reaction with bromine in tetrachloridecarbon. The resulting nanocomposite was analyzed by a series of characterization techniques such as FT-IR, SEM, TGA, VSM and XRD. The catalyst could be recovered via magnetic attraction and could be recycled at least 5 times without appreciable decrease in activity.  相似文献   

12.
In this research, the main emphasis has been focused on the preparation of a novel Fe3O4-supported propane-1-sulfonic acid-grafted graphene oxide quantum dots (Fe3O4@GOQD-O-(propane-1-sulfonic acid)) that it was readily synthesized via a five-step procedure as a hitherto unreported magnetic nanocatalyst. This newly prepared Fe3O4@GOQD-O-(propane-1-sulfonic acid) nanocomposite was structurally well-established by different analytical techniques including Fourier transform infrared (FT-IR), X-ray diffraction (XRD), energy-dispersive X-ray (EDX), thermal gravimetric analysis (TGA), field emission gun-scanning electron microscope (FESEM), high-resolution transmission electron microscopy (HRTEM) and vibrating sample magnetometer (VSM) analyses. The high catalytic performance of this nanocomposite was exhibited in one-pot synthesis of dihydropyrano[2,3-c]pyrazole and 4H-chromene derivatives under mild conditions. Low reaction times, excellent yields of the products, benignity of the catalyst, easy reaction work-up and magnetic recyclability of the catalyst are the main advantages of the present protocol. Also, our research indicated that the Fe3O4@GOQD-O-(propane-1-sulfonic acid) could be reused up to five times without considerable loss of catalytic activity.  相似文献   

13.
In this work, we reported one-step deposition of polyacrylamide on nano-magnetite surface via a simple and in situ polymerization of acryl amide to form n-Fe3O4/PAM nanocomposite. The amide (–CONH2) groups could be converted easily to amine (–NH2) groups through Hofmann degradation to introduce n-Fe3O4/PVAm as a highly efficient heterogeneous base catalyst. The obtained organic-inorganic nanocomposite exhibited high catalytic activity for the solvent-free syntheses of various dihydropyrano[2,3-c]pyrazole derivatives and the Knoevenagel condensation in high to excellent yields and in the following, a plausible mechanism for the synthesis of them has been proposed. Because of the polymer layer coated Fe3O4 nanoparticles, the catalyst has many catalytic units, and acceptable thermal stability and recyclability. Titration, FT-IR, SEM, TGA, VSM, and XRD analysis were used for characterization of the catalyst. Also, the nanocomposite can be easily recovered by a magnetic field and reused up to 9 times without distinct deterioration in catalytic activity.  相似文献   

14.
通过简易的超声法以及原位还原法成功制备出了负载型可再生Au/Fe3O4催化剂。利用3-氨丙基三乙氧基硅烷(APTES)作为有机桥键,将Au固定在Fe3O4的表面,得到单分散磁性Au/Fe3O4。Au0在氨基的作用下不会团聚,因此具有较高的催化活性及稳定性。XRD、HRTEM、EDS和XPS等测试结果表明Au/Fe3O4已被成功制备。将其用于催化还原4-硝基苯酚得到4-氨基苯酚,表现出较高的催化活性,速率常数可达0.225 6 min-1。重复性实验表明该催化剂具有良好的稳定性,反应9个循环之后,催化还原反应的转化率仍可达到94%。  相似文献   

15.
In order to accelerate the reaction rate of water splitting, it is of immense importance to develop low‐cost, stable and efficient catalysts. In this study, the facile synthesis of a novel rose‐like nanocomposite catalyst (Ni2P/Fe2P/Fe3O4) is reported. The synthesis process includes a solvothermal step and a phosphatization step to combine iron oxides and iron‐nickel phosphides. Ni2P/Fe2P/Fe3O4 performs well in catalyzing oxygen evolution reaction, with a very low overpotential of 365 mV to reach 10 mA cm?2 current density. The Tafel slope is as low as 59 mV dec?1. Ni2P/Fe2P/Fe3O4 has a large double‐layer capacitance that contributes to a high electrochemically active area. Moreover, this catalyst is very stable for long‐term use. Therefore, the Ni2P/Fe2P/Fe3O4 catalyst has a high potential for use in oxygen evolution reactions.  相似文献   

16.
An efficient procedure for the synthesis of new chromenes by the multicomponent reaction of aldehydes, 4‐hydroxycoumarin and 2‐hydroxynaphthalene‐1,4‐dione in the presence of an ionic liquid supported on Fe3O4 nanoparticles is described. The ionic liquid supported on Fe3O4 nanoparticles as a magnetic catalyst gives products in high yields. Significant features of this method are: short reaction times, excellent yields, green method and use of an effective catalyst that can be recovered and reused many times without loss of its catalytic activity.  相似文献   

17.
通过简易的超声法以及原位还原法成功制备出了负载型可再生Au/Fe_3O_4催化剂。利用3-氨丙基三乙氧基硅烷(APTES)作为有机桥键,将Au固定在Fe_3O_4的表面,得到单分散磁性Au/Fe_3O_4。Au0在氨基的作用下不会团聚,因此具有较高的催化活性及稳定性。XRD、HRTEM、EDS和XPS等测试结果表明Au/Fe_3O_4已被成功制备。将其用于催化还原4-硝基苯酚得到4-氨基苯酚,表现出较高的催化活性,速率常数可达0.225 6 min~(-1)。重复性实验表明该催化剂具有良好的稳定性,反应9个循环之后,催化还原反应的转化率仍可达到94%。  相似文献   

18.
A nanocomposite was synthesized using carbon‐coated Fe3O4 nanoparticle‐decorated reduced graphene oxide as a convenient and efficient supporting material for grafting of a manganese–reduced Schiff base (salan) complex via covalent attachment. The nanocomposite was characterized using X‐ray diffraction, Fourier transform infrared and diffuse reflectance UV–visible spectroscopies, inductively coupled plasma atomic emission spectrometry and scanning electron microscopy. It was evaluated as a catalyst for the aerobic epoxidation of olefins in acetonitrile in combination with a sacrificial co‐reductant (isobutyraldehyde). The catalytic performance of the heterogeneous system of the Mn–salan complex is superior to that of the homogeneous one. The catalyst activity strongly depends on the reaction temperature and nature of the solvent. The epoxide yield increases with the nucleophilic character of the olefin. The nanocomposite performs well as an epoxidation catalyst for electron‐rich and conjugated olefins. It can be recovered from the reaction medium by magnetic decantation and reused, maintaining good catalytic activity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
A magnetically separable catalyst Al2O3‐MgO/Fe3O4 was prepared by Al2O3‐MgO supported on magnetic oxide Fe3O4 and charactered by FT‐IR, XRD and SEM. The mixed oxides afforded high catalytic activity and selectivity for synthesis of 1‐phenoxy‐2‐propanol from phenol and propylene oxide with 80.3% conversion and 88.1% selectivity to 1‐phenoxy‐2‐propanol. Especially, facile separation of the catalyst by a magnet was obtained and the catalytic performance of the recovered catalyst was unaffected even at the forth run.  相似文献   

20.
A convenient method for the synthesis of magnetically recyclable palladium nanoparticles (Fe3O4‐Pd) is described. The catalytic application of the Fe3O4‐Pd nanoparticles was explored for the first time in oxidative coupling between amides and olefins. p‐Toluenesulfonic acid plays a significant role in the oxidative amidation reaction. The reaction proceeds at room temperature, resulting in (Z)‐enamides under ambient air in the absence of co‐catalyst and ligand. The superparamagnetic nature of Fe3O4‐Pd facilitates easy, quantitative recovery of the catalyst from a reaction mixture, and it can be reused for up to three consecutive cycles with a slight decrease in catalytic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号