首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
An unexpected polyhydroxyl‐bridged tetranuclear ZnII complex and a benzoquinone compound derived from metal‐ion promoted reactivity of Schiff base ligands were synthesized and characterized. The reaction of zinc(II) acetate dihydrate with oxime‐type Schiff base ligand HL1 [HL1 = 1‐(3‐((3,5‐dibromosalicylaldehyde)amino)phenyl)ethan‐1‐one O‐benzyl oxime] in methanol, acetone, and acetonitrile resulted in the chemoselective cleavage of the C=N bond of the Schiff base HL1, and then the further addition of acetone to two salicylaldehyde molecules derived from cleavage of the C=N bond in situ α,α double aldol reaction promoted by ZnII ions. The newly formed ligands H4L2 coordinate to four ZnII ions forming a defect‐dicubane core structure [ZnII4(H2L2)23‐OCH3)2(μ‐OCH3)2(CH3OH)2] ( 1 ) bridged exclusively by oxygen‐based ligands. The similar ligand HL3 [HL3 = 1‐(3‐((3,5‐dichlorosalicylaldehyde)amino)phenyl)ethan‐1‐one O‐benzyl oxime)] was employed to react with CdII acetate dihydrate under the same reaction conditions. No aldol addition occurred but a unexpected benzoquinone compound 2,5‐bis(((3‐(1‐((benzyloxy)imino)ethyl)phenyl)imino)methyl)‐1,4‐benzoquinone ( 2 ) formed. The results provided interesting insights into one‐pot routes involving in situ reactions act as a strategy for obtaining a variety of polymeric/polynuclear complexes which are inconvenient to obtain from directly presynthesizing the ligands.  相似文献   

2.
5-Formylpyrrolyl-substituted nitronyl and imino nitroxide radicals HL1 and HL2 were synthesized. Their solid phases are formed by packing pairs of the molecules. In the {HL1...HL1} pairs, the dominant interaction is the ferromagnetic exchange with J/kB = 8.8 K (Hamiltonian \(H = 2J\left( {\overrightarrow {{s_1}} \overrightarrow {{s_2}} } \right)\)). The ferromagnetic exchange occurs also in the heterospin molecules [Ni(L1)2], [Cu(L1)2], and [Ni(L2)2(MeOH)2]. In the complexes [Ni(L1)2] and [Cu(L1)2], a small change in the mutual orientation of the coordinated ligands has a considerable effect on the value and the sign of the energy of exchange interactions between the unpaired electrons of the metal ion and paramagnetic ligands.  相似文献   

3.
[ReNCl2(PPh3)2] and [ReNCl2(PMe2Ph)3] react with the N‐heterocyclic carbene (NHC) 1,3,4‐triphenyl‐1,2,4‐triazol‐5‐ylidene (HLPh) under formation of the stable rhenium(V) nitrido complex [ReNCl(HLPh)(LPh)], which contains one of the two NHC ligands with an additional orthometallation. The rhenium atom in the product is five‐coordinate with a distorted square‐pyramidal coordination sphere. The position trans to the nitrido ligand is blocked by one phenyl ring of the monodentate HLPh ligand. The Re–C(carbene) bond lengths of 2.072(6) and 2.074(6) Å are comparably long and indicate mainly σ‐bonding between the NHC ligand and the electron deficient d2 metal atom. The chloro ligand in [ReNCl(HLPh)(LPh)] is labile and can be replaced by ligands such as pseudohalides or monoanionic thiolates such as diphenyldithiophosphinate (Ph2PS2?) or pyridine‐2‐thiolate (pyS?). X‐ray structure analyses of [ReN(CN)(HLPh)(LPh)] and [ReN(pyS)(HLPh)(LPh)] show that the bonding situation of the NHC ligands (Re–C(carbene) distances between 2.086(3) and 2.130(3) Å) in the product is not significantly influenced by the ligand exchange. The potentially bidentate pyS? ligand is solely coordinated via its thiolato functionality. Hydrogen atoms of each one of the phenyl rings come close to the unoccupied sixth coordination positions of the rhenium atoms in the solid state structures of all complexes. Re–H distances between 2.620 and 2.712Å do not allow to discuss bonding, but with respect to the strong trans labilising influence of “N3?”, weak interactions are indicated.  相似文献   

4.
Two series of organotin(IV) complexes with Sn–S bonds on the base of 2,6‐di‐tert‐butyl‐4‐mercaptophenol ( L 1 SH ) of formulae Me2Sn(L1S)2 ( 1 ); Et2Sn(L1S)2 ( 2 ); Bu2Sn(L1S)2 ( 3 ); Ph 2 Sn(L1S)2 ( 4 ); (L1)2Sn(L1S)2 ( 5 ); Me3Sn(L1S) ( 6 ); Ph3Sn(L1S) ( 7 ) (L1 = 3,5‐di‐tert‐butyl‐4‐hydroxyphenyl), together with the new ones [Me3SnCl(L2)] ( 8 ), [Me2SnCl2(L2)2] ( 9 ) ( L 2  = 2‐(N‐3,5‐di‐tert‐butyl‐4‐hydroxyphenyl)‐iminomethylphenol) were used to study their antioxidant and cytotoxic activity. Novel complexes 8 , 9 of MenSnCl4 ? n (n = 3, 2) with Schiff base were synthesized and characterized by 1H, 13C NMR, IR and elemental analysis. The crystal structures of compounds 8 and 9 were determined by X‐ray diffraction analysis. The distorted tetrahedral geometry around the Sn center in the monocrystals of 8 was revealed, the Schiff base is coordinated to the tin(IV) atom by electrostatic interaction and formation of short contact Sn–O 2.805 Å. In the case of complex 9 the distorted octahedron coordination of Sn atom is formed. The antioxidant activity of compounds as radical scavengers and reducing agents was proved spectrophotometrically in tests with stable radical DPPH, reduction of Cu2+ (CUPRAC method) and interaction with superoxide radical‐anion. Moreover, compounds have been screened for in vitro cytotoxicity on eight human cancer cell lines. A high activity against all cell lines with IC50 values 60–160 nM was determined for the triphenyltin complex 7 , while the introduction of Schiff base decreased the cytotoxicity of the complexes. The influence on mitochondrial potential and mitochondrial permeability for the compounds 8 and 9 has been studied. It is shown that studied complexes depolarize the mitochondria but don't influence the calcium‐induced mitochondrial permeability transition.  相似文献   

5.
Four new complexes [Cu(L1)2]n ( 1 ), [Mn(L1)2]n ( 2 ), [Cu(L2)2]n ( 3 ), [Mn(L2)2]n ( 4 , HL1 = 2-(((4H-1,2,4-triazol-4-yl)imino)methyl)-4,6-dichlorophenol; HL 2 = 2-(((4H-1,2,4-triazol-4-yl)imino)methyl)-4,6-dibromophenol) were synthesized by microreaction bottle method. Complexes 1 and 3 and 2 and 4 are isomorphous heterostructures having the same molecular structure. The structures of 1 – 4 were characterized using single X-ray diffraction, Fourier-transform infrared spectroscopy, powder X-ray diffraction, and thermogravimetric analysis, and their potential applications were analyzed by detecting their fluorescence and electrochemical luminescence (ECL). Hirshfeld surface analysis indicates that X···H (X = Br, Cl) interactions play a crucial role in stabilizing the self-assembly process of 1 – 4 , which show highly intense ECL in N,N-dimethylformamide solution and high thermal stability.  相似文献   

6.
The dinuclear Cu(II) complexes [Cu2(L1)2(mb)]?ClO4 ( 1 ) and [Cu2(L2)2(mb)]?ClO4 ( 2 ) (HL1 = 2‐[(2‐diethylaminoethylimino)methyl]phenol; HL2 = 2‐[1‐(2‐diethylaminoethylimino)propyl]phenol; mb = 4‐methylbenzoate) were synthesized and characterized using X‐ray crystal structure analysis and spectroscopic methods. Complexes 1 and 2 are dinuclear with distorted square pyramidal Cu (II) geometries, where Schiff base coordinates with tridentate (N,N,O) chelating mode and mb bridges two metal centres. Optimized structures and photophysical properties of ligands and complexes were calculated using density functional theory and time‐dependent density functional theory methods using B3LYP functional with 6‐31G (d,p) and LanL2MB basis sets. Interactions of the complexes with bovine serum albumin (BSA) and human serum albumin (HSA) were studied using UV–visible absorption and fluorescence spectroscopies and the calculated values of association constants (M?1) are 1.7 × 105 ( 1 –BSA), 5.7 × 105 ( 2 –BSA), 1.6 × 105 ( 1 –HSA) and 6.9 × 105 ( 2 –HSA). Interactions of the complexes with calf thymus DNA were also investigated and the binding affinities are 1.4 × 105 and 1.6 × 105 M?1 for 1 and 2 , respectively. Both complexes catalytically oxidize 3,5‐di‐tert‐butylcatechol to 3,5‐di‐tert‐butylbenzoquinone in the presence of molecular oxygen.  相似文献   

7.
Reactions of the oxorhenium(V) complexes [ReOX3(PPh3)2] (X = Cl, Br) with the N‐heterocyclic carbene (NHC) 1,3,4‐triphenyl‐1,2,4‐triazol‐5‐ylidene (LPh) under mild conditions and in the presence of MeOH or water give [ReOX2(Y)(PPh3)(LPh)] complexes (X = Cl, Br; Y = OMe, OH). Attempted reactions of the carbene precursor 5‐methoxy‐1,3,4‐triphenyl‐4,5‐dihydro‐1H‐1,2,4‐triazole ( 1 ) with [ReOCl3(PPh3)2] or [NBu4][ReOCl4] in boiling xylene resulted in protonation of the intermediately formed carbene and decomposition products such as [HLPh][ReOCl4(OPPh3)], [HLPh][ReOCl4(OH2)] or [HLPh][ReO4] were isolated. The neutral [ReOX2(Y)(PPh3)(HLPh)] complexes are purple, airstable solids. The bulky NHC ligands coordinate monodentate and in cis‐position to PPh3. The relatively long Re–C bond lengths of approximate 2.1Å indicate metal‐carbon single bonds.  相似文献   

8.
Two novel sulfonate phenol ligands—3,3′‐di‐tert‐butyl‐2′‐hydroxy‐5,5′,6,6′‐tetramethyl‐biphenyl‐2‐yl 4‐X‐benzenesulfonate (X?CF3, LCF3 ‐H, and X?OCH3, LOMe ‐H)—were prepared through the sulfonylation of 3,3′‐di‐tert‐butyl‐5,5′,6,6′‐tetramethylbiphenyl‐2,2′‐diol with the corresponding 4‐substituted benzenesulfonyl chloride (1 equiv.) in the presence of excess triethylamine. Magnesium (Mg) complexes supported by sulfonate phenoxide ligands were synthesized and characterized structurally. The reaction of MgnBu2 with L‐H (2 equiv.) produces the four‐coordinated monomeric complexes ( LCF3 )2Mg ( 1 ) and ( LOMe )2Mg ( 2 ). Complexes 1 and 2 are efficient catalysts for the ring‐opening polymerization of ε‐caprolactone (ε‐CL) and trimethylene carbonate (TMC) in the presence of 9‐anthracenemethanol; complex 1 catalyzes the polymerization of ε‐CL and TMC in a controlled manner, yielding polymers with the expected molecular weights and narrow polydispersity indices (PDIs). In ε‐CL polymerization, the activity of complex 1 is greater than that of complex 2 , likely because of the greater Lewis acidity of Mg2+ metal caused by the electron‐withdrawing substitute trifluoromethyl (? CF3) at the 4‐position of the benzenesulfonate group. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3564–3572, 2010  相似文献   

9.
1,3,6,8‐Tetra‐tert‐butylcarbazol‐9‐yl and 1,8‐diaryl‐3,6‐di(tert‐butyl)carbazol‐9‐yl ligands have been utilized in the synthesis of potassium and magnesium complexes. The potassium complexes (1,3,6,8‐tBu4carb)K(THF)4 ( 1 ; carb=C12H4N), [(1,8‐Xyl2‐3,6‐tBu2carb)K(THF)]2 ( 2 ; Xyl=3,5‐Me2C6H3) and (1,8‐Mes2‐3,6‐tBu2carb)K(THF)2 ( 3 ; Mes=2,4,6‐Me3C6H2) were reacted with MgI2 to give the Hauser bases 1,3,6,8‐tBu4carbMgI(THF)2 ( 4 ) and 1,8‐Ar2‐3,6‐tBu2carbMgI(THF) (Ar=Xyl 5 , Ar=Mes 6 ). Structural investigations of the potassium and magnesium derivatives highlight significant differences in the coordination motifs, which depend on the nature of the 1‐ and 8‐substituents: 1,8‐di(tert‐butyl)‐substituted ligands gave π‐type compounds ( 1 and 4 ), in which the carbazolyl ligand acts as a multi‐hapto donor, with the metal cations positioned below the coordination plane in a half‐sandwich conformation, whereas the use of 1,8‐diaryl substituted ligands gave σ‐type complexes ( 2 and 6 ). Space‐filling diagrams and percent buried volume calculations indicated that aryl‐substituted carbazolyl ligands offer a steric cleft better suited to stabilization of low‐coordinate magnesium complexes.  相似文献   

10.
We report here the synthesis, structure, magnetic and photoluminescent properties of three new bifunctional Schiff‐base complexes [Dy(L1)2(py)2][B(Ph)4]?py ( 1 ), [Dy(L1)2Cl(DME)] ? 0.5DME ( 2 ) and [Dy(L2)2Cl] ? 2.5(C7H8) ( 3 ) (HL1=Phenol, 2,4‐bis(1,1‐dimethylethyl)‐6‐[[(2‐methoxy‐5‐methylphenyl)imino]methyl]; HL2=Phenol, 2,4‐bis(1,1‐dimethylethyl)‐6‐[[(2‐methoxyphenyl)imino]methyl]). The coordination environment of the Dy3+ ion and the direction of the anisotropic axis may be controlled by the combination of the substituent groups of the Schiff bases, the nature of the counter‐ions (Cl? vs. BPh4?) and the coordinative solvent molecules. A zero‐field slow relaxation of the magnetization is evidenced for all complexes but strong differences in the relaxation dynamics are observed depending on the Dy3+ site geometry. In this sense, complex 1 exhibits an anisotropy barrier of 472 cm?1, which may be favourably compared to other related examples due to the shortening of the Dy?O bond in the axial direction. Besides, the three complexes exhibit a ligand‐based luminescence making them as bifunctional magneto‐luminescent systems.  相似文献   

11.
A new series of twelve bidentate Schiff's base ligands (HL1–12) was synthesized via condensation of 5‐(arylazo)salicylaldehydes with aromatic amines. When the new salicylaldimine derivatives were reacted with copper(II) chloride, the neutral complexes Cu(L1–12)2 were obtained. The structure of the copper complexes was established from microanalyses, IR and UV spectra and thermal analyses. The results suggested that the ligands were coordinated to the metal ion in a bidentate manner with ON donor sites of the deprotonated phenolic‐OH and azomethine‐N. The composition of the complexes can be represented as CuL2. Evaluation of antimicrobial activity for the synthesized compounds was carried out to probe their activity. The compounds were found to have weak antimicrobial activity.  相似文献   

12.
Three new heteroscorpionate ligands, (2‐hydroxyphenyl)bis(imidazol‐1‐yl)methane (HL1), (4‐diethylamino‐2‐hydroxyphenyl)bis(imidazol‐1‐yl)methane (HL2) and (5‐bromo‐2‐hydroxyphenyl)bis(imidazol‐1‐yl)methane (HL3), and their heteroleptic copper(II) complexes of the type [Cu(L1–3)diimine]ClO4 ( 1 – 6 ; where diimine =2,2′‐bipyridyl or 1,10‐phenanthroline) have been synthesized and characterized using spectroscopic methods. The molecular structure of ligand HL1 was determined by single‐crystal X‐ray diffraction. UV–visible, electron paramagnetic resonance and theoretical studies suggest a distorted square pyramidal geometry around copper(II) ion. Analyses of highest occupied and lowest unoccupied molecular orbitals have been used to explain the charge transfer taking place within the complexes. The antioxidant activities of the heteroscorpionate ligands and their heteroleptic copper(II) complexes were determined using ABTS, DPPH and H2O2 free radical scavenging assays with respect to standard antioxidant ascorbic acid. In molecular docking studies, the complexes showed π–π, hydrogen bonding, van der Waals and electrostatic interactions with fibroblast growth factor receptor kinase. In vitro cytotoxicity activities of ligands and copper(II) complexes were examined on human breast adenocarcinoma (MCF‐7), cervical (HeLa) and lung (A549) cancer cell lines and normal human dermal fibroblast cell line using MTT assay. Complex 4 exhibited higher anticancer activity than the other complexes against all three cancer lines, being more potent than the standard drug cisplatin.  相似文献   

13.
A series of six N,N‐di‐substituted acylthiourea ArC(O)NHC(S)NRR′ ligands (denoted as HLn) [Ar = 1‐Naph: NRR′ = NPh2, HL1 ( 1 ); N(iPr)Ph, HL2 ( 2 ). Ar = Mes: NRR′ = NPh2, HL4 ( 3 ); N(iPr)Ph, HL5 ( 4 ); NEt2, HL6 ( 5 ). Ar = Ph: NRR′ = N(iPr)Ph, HL8 ( 6 )] were synthesized and characterized. These ligands were deprotonated to form CuII complexes through metathesis or combined redox reaction with copper halides. The structures of the complexes were investigated with single‐crystal X‐ray diffraction. The reaction of the 1‐naphthalene derivative HL1 ( 1 ) with CuBr in the presence of sodium acetate produced cis‐CuL12 ( 7 ), where the deprotonated ligand is bound to the CuII atom in a bidentate‐(O, S) coordination mode. Similarly treatment of HL2 ( 2 ) with NaOAc and CuCl resulted in the formation of the cis‐arranged product [cis‐CuL22 ( 8 )]. The reaction of mesityl derivative HL4 ( 3 ) and CuBr with and without the addition of NaOAc gave the cis‐CuL42 ( 9 ) and cis‐(HL4)2CuBr ( 10 ), respectively. In contrast, reaction of HL5 ( 4 ) and CuI in the presence of NaOAc resulted in trans‐CuL52 ( 11 ). Alternatively trans‐CuL62 ( 12 ) was obtained by the reaction of diethyl‐substituted HL6 ( 5 ) with CuCl2 in the absence of a base.  相似文献   

14.
Novel ruthenium (II) complexes were prepared containing 2‐phenyl‐1,8‐naphthyridine derivatives. The coordination modes of these ligands were modified by addition of coordinating solvents such as water into the ethanolic reaction media. Under these conditions 1,8‐naphthyridine (napy) moieties act as monodentade ligands forming unusual [Ru(CO)2Cl21‐2‐phenyl‐1,8‐naphthyridine‐ kN )(η1‐2‐phenyl‐1,8‐naphthyridine‐kN′)] complexes. The reaction was reproducible when different 2‐phenyl‐1,8‐naphthyridine derivatives were used. On the other hand, when dry ethanol was used as the solvent we obtained complexes with napy moieties acting as a chelating ligand. The structures proposed for these complexes were supported by NMR spectra, and the presence of two ligands in the [Ru(CO)2Cl21‐2‐phenyl‐1,8‐naphthyridine‐ kN )(η1‐2‐phenyl‐1,8‐naphthyridine‐kN′)] type complexes was confirmed using elemental analysis. All complexes were tested as catalysts in the hydroformylation of styrene showing moderate activity in N,N′‐dimethylformamide. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
Acetylpyridine benzoylhydrazone and related ligands react with common dioxouranium(VI) compounds such as uranyl nitrate or [NBu4]2[UO2Cl4] to form air‐stable complexes. Reactions with 2, 6‐diacetylpyridinebis(benzoylhydrazone) (H2L1a) or 2, 6‐diacetylpyridinebis(salicylhydrazone) (H2L1b) give yellow products of the composition [UO2(L1)]. The neutral compounds contain doubly deprotonated ligands and possess a distorted pentagonal‐bipyramidal structure. The hydroxo groups of the salicylhydrazonato ligand do not contribute to the complexation of the metal. The equatorial coordination spheres of the complexes can be extended by the addition of a monodentate ligand such as pyridine or DMSO. The uranium atoms in the resulting deep‐red complexes have hexagonal‐bipyramidal coordination environments with the oxo ligands in axial positions. The sterical strains inside the hexagonal plane can be reduced when two tridentate benzoylhydrazonato ligands are used instead of the pentadentate 2, 6‐diacetylpyridine derivatives. Acetylpyridine benzoylhydrazone (HL2) and bis(2‐pyridyl)ketone benzoylhydrazone (HL3) deprotonate and form neutral, red [UO2(L)2] complexes. The equatorial coordination spheres of these complexes are puckered hexagons. X‐ray diffraction studies on [UO2(L1a)(pyridine)], [UO2(L1b)(DMSO)], [UO2(L2)2] and [UO2(L3)2] show relatively short U—O bonds to the benzoylic oxygen atoms between 2.328(6) and 2.389(8) Å. This suggests a preference of these donor sites of the ligands over their imino and amine functionalities (U—N bond lengths: 2.588(7)—2.701(6) Å ).  相似文献   

16.
A series of six new Zn (II) compounds, viz., [Zn(HLASA)2(Py)2] ( 1 ), [Zn(HLMASA)2(Py)2] ( 2 ), [Zn(HLMASA)2(4‐MePy)2] ( 3 ), [Zn(HLCASA)2(4‐MePy)2] ( 4 ), [Zn(HLBASA)2(Py)2] ( 5 ), [Zn(HLBASA)2(4‐MePy)2] ( 6 ) and representative Cu (II) and Cd (II) complexes, viz., [Cu(HLASA)2(Py)2(H2O)] ( 7 ) and [Cd(HLBASA)2(Py)3] ( 8 ) [(HLXASA)? = para‐substituted 5‐[(E)‐2‐(aryl)‐1‐diazenyl]‐2‐hydroxybenzoate with X = H (ASA), Me (MASA), Cl (CASA) or Br (BASA); Py = pyridine; 4‐MePy = 4‐methylpyridine] have been synthesized and characterized by spectroscopic techniques and single‐crystal X‐ray diffraction analysis. The structural characterization of the compounds revealed distorted tetrahedral ( 1 – 6 ), square‐pyramidal ( 7 ) and pentagonal‐bipyramidal ( 8 ) coordination geometries around the metal atom, in which the aryl‐substituted diazosalicylate ligands are coordinated only through the oxygen atoms of carboxylate groups, either in an anisobidentate or isobidentate mode; meanwhile, the 2‐hydroxy groups of the monoanionic ligand (HLXASA)? are involved only in intramolecular O‐H···O hydrogen bonds with the carboxylate function. In the crystal structures of 1 – 8 , the complex molecules are assembled by π‐stacking interactions giving mostly infinite 1D strands. The intermolecular binding in the solid state structures is accomplished by diverse additional non‐covalent contacts including C‐H···O, C‐H···N, C‐H···π, C‐H···Br, O···Br, Br···π and van der Waals contacts. Although the primary and secondary ligands in the Zn (II) complex series 1 – 6 carry different substituents at the periphery (X = H, Me, Cl, Br for (HLXASA)? and R = H, Me for 4‐Py‐R), five of the crystal structures were isostructural. Additionally, the antimicrobial activity of the pro‐ligands H2LXASA and their Zn (II), Cu (II) and Cd (II) compounds were studied in a comparative manner, showing high sensitivity (IZD ≥ 20) against Bacillus subtilis.  相似文献   

17.
A new class of half‐sandwich (η6p‐cymene) ruthenium(II) complexes supported by 2‐aminofluorene derivatives [Ru(η6p‐cymene)(Cl)(L)] ( L  = 2‐(((9H‐fluoren‐2‐yl)imino)methyl)phenol ( L 1 ), 2‐(((9H‐fluoren‐2‐yl)imino)methyl)‐3‐methoxyphenol ( L 2 ), 1‐(((9H‐fluoren‐2‐yl)imino)methyl)naphthalene‐2‐ol ( L 3 ) and N‐((1H‐pyrrol‐2‐yl)methylene)‐9H‐fluorene‐2‐amine ( L 4 )) were synthesized. All compounds were fully characterized by analytical and spectroscopic techniques (IR, UV–Vis, NMR) and also by mass spectrometry. The solid state molecular structures of the complexes [Ru(η6p‐cymene)(Cl)(L2)], [Ru(η6p‐cymene)(Cl)(L3)] and [Ru(η6p‐cymene)(Cl)(L4)] revealed that the 2‐aminofluorene and p‐cymene moieties coordinate to ruthenium(II) in a three‐legged piano‐stool geometry. The synthesized complexes were used as catalysts for the dehydrogenative coupling of benzyl alcohol with a range of amines (aliphatic, aromatic and heterocyclic). The reactions were carried out under thermal heating, ultrasound and microwave assistance, using solvent or solvent free conditions, and the catalytic performance was optimized regarding the solvent, the type of base, the catalyst loading and the temperature. Moderately high to very high isolated yields were obtained using [Ru(η6p‐cymene)(Cl)(L4)] at 1 mol%. In general, microwave irradiation produced better yields than the other two techniques irrespective of the nature of the substituents.  相似文献   

18.
Sigma‐ versus Pi‐Coordination in Bis‐indenyl‐ and Bis‐2‐methallyl Imido Complexes of Hexavalent Molybdenum and Tungsten: DF‐Calculations and Crystal Structure Analysis Bis‐indenyl and bis‐2‐methallyl imido complexes [(C9H7)2M(NR)2] (M = Mo, W; R = tert‐butyl, mesityl) 1 — 4 and [(H3C‐C3H4)2M(NtBu)2] (M = Mo, W) 6 , 7 have been prepared starting from [Mo(NtBu)2Cl2] or [M(NR)2Cl2L2] (M = W, R = tBu, L = py; M = Mo, W, R = Mes, L2 = dme) and indenyl lithium or 2‐methallyl magnesium bromide, respectively. According to spectroscopic data and the crystal structure of 4 there are two different coordination modes of the indenyl ligands, [(η3‐C9H7)M(NR)21‐C9H7)], in solution as well as in the solid state. These compounds show fluxional rearrangements in solution, namely σ, π‐exchange of η1‐ and η3‐coordinated ligands. Similar behavior has been observed for the 2‐methallyl complexes 6 and 7 in solution. In agreement with experimental observations, DF calculations on models of 6 strongly suggest a (σ+π)‐coordination mode of the η3‐coordinated ligand.  相似文献   

19.
Three heteroleptic copper(II) complexes of the type [Cu(L1–3)(cf)(ClO4)] ( 1 – 3 ), where cf = ciprofloxacin, have been synthesized using pyridazine‐based ligands 3‐chloro‐6‐(salicylidenehydrazinyl)pyridazine (HL1), 3‐chloro‐6‐(4‐diethylaminosalicylidenehydrazinyl)pyridazine (HL2) and 3‐chloro‐6‐(5‐bromosalicylidenehydrazinyl)pyridazine (HL3). Electronic spectral data and magnetic moment values suggest octahedral geometry for the synthesized copper(II) complexes. Electrochemical data of the copper(II) complexes present an irreversible one‐electron reduction wave in the cathodic potential region (Epc) between ?0.631 and ?0.670 V. Frontier molecular orbital calculations were carried out, and the obtained low‐energy gap supports the bio‐efficacy of the complexes. All the complexes were screened for their in vitro cytotoxicity activity against three human cancerous (breast adenocarcinoma (MCF‐7), hepatoma (HepG‐2) and cervical (HeLa)) and one non‐cancerous (non‐tumorigenic human dermal fibroblast (NHDF)) cell lines using MTT assay, in which complex 2 exhibited higher activity. The apoptosis induction by the complexes was analysed using the Hoechst dye staining method with MCF‐7 cell line, which indicates higher apoptotic activity of complex 2 . A molecular docking study was carried out to ascertain the binding affinity of the synthesized heteroleptic copper(II) complexes with phosphoinositide 3‐kinase gamma (PI3Kγ) receptor.  相似文献   

20.
Novel Ni(II) complexes of 2‐(1H–benzimidazol‐2‐yl)‐phenol derivatives (HLx: x  =  1–5; C1–C5 ) have been synthesized and characterized. In the mononuclear complexes, the ligands were coordinated as bidentate, via one imine nitrogen and the phenolate oxygen atoms. The structures of the compounds were confirmed on the basis of FT‐IR, UV–Vis, 1H‐, 13C–NMR, inductively coupled plasma and elemental analyses (C, H and N). The purity of these compounds was ascertained by melting point (m.p.) and thin‐layer chromatography. The geometry optimization and vibrational frequency calculations of the compounds were performed using Gaussian 09 program with B3LYP/TZVP level of theory. All Ni(II) complexes were activated with diethylaluminum chloride (Et2AlCl), so that C2 showed the highest activity [6600 kg mol?1 (Ni) h?1], where the ligand contains a chlorine substituent. Oligomers obtained from the complexes consist mainly of dimer and trimer, and also exhibit high selectivity for linear 1‐butene and 1‐hexene. Both the steric and electronic effects of coordinative ligands affect the catalytic activity and the properties of the catalytic products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号