首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel and highly efficient method for the synthesis of 1,4‐disubstituted‐1H‐1,2,3‐triazoles by copper‐catalyzed azide‐alkyne cycloaddition has been developed. This economic and sustainable protocol uses a readily available Benedict's solution/Vitamin C catalyst system affording a wide range of 1,4‐disubstituted‐1H‐1,2,3‐triazoles under mild conditions.  相似文献   

2.
An efficient one‐pot synthesis of 1,2,3‐triazoles via the three‐component coupling reaction between benzyl or alkyl bromides, terminal alkynes, and sodium azide in the presence of catalytic amounts of Cu(OAc)2/MCM‐41 catalyst has been described. This catalyst showed high catalytic activity and 1,4‐regioselectivity for the [3 + 2]Huisgen cycloaddition. This method avoids isolation and handling of organic azides, using water as a solvent, and catalyst recycling makes this synthesis a truly green procedure. © 2012 Wiley Periodicals, Inc. Heteroatom Chem 23:415–421, 2012; View this article online at wileyonlinelibrary.com . DOI 10.1002/hc.21031  相似文献   

3.
A microwave‐assisted multicomponent reaction was used to prepare a series of β‐hydroxy‐1,2,3‐triazoles in the presence of copper@PMO nanocomposites as a catalyst. Box–Behnken design and response surface methodology were used to optimize the influencing parameters such as catalyst content, reaction time and microwave power, being an economical way of obtaining the optimal reaction conditions based on restricted number of experiments. Aqueous reaction medium, easy recovery of catalyst, efficient recycling and high stability of the catalyst render the protocol sustainable and economic. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
An eco‐efficient, green, and multi‐gram procedure is presented for one‐pot multicomponent synthesis of N‐substituted 1,2,3‐triazoles by using waste fishbone powders supported CuBr (FBPs‐CuBr) as catalyst. FBPs‐CuBr is found to be an efficient heterogeneous catalyst and a series of 1,2,3‐triazoles are obtained in moderate to excellent yields in water under MW irradiation (70–98%). It can be separated conveniently by a simple filtration and reused at least seven consecutive runs with a slight drop in the product yields. Furthermore, the desired product still could be obtained in 80% yield when the scale of the reaction was increased to 40.0 mmol.  相似文献   

5.
Cu(I) and nanoparticles of Pd supported on ethylenediamine‐functionalized cellulose as a novel bio‐supported catalyst was synthesized and characterized. The synthesized catalyst was found to be a highly efficient heterogeneous catalyst for the synthesis of 1,4,5‐trisubstituted 1,2,3‐triazoles through a sustainable 1,3‐dipolar cycloaddition/direct arylation sequence. The catalyst could be easily recovered by simple filtration and reused for at least five cycles without losing its activity. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Whereas copper‐catalyzed azide–alkyne cycloaddition (CuAAC) between acetylated β‐D ‐glucosyl azide and alkyl or phenyl acetylenes led to the corresponding 4‐substituted 1‐glucosyl‐1,2,3‐triazoles in good yields, use of similar conditions but with 2 equiv CuI or CuBr led to the 5‐halogeno analogues (>71 %). In contrast, with 2 equiv CuCl and either propargyl acetate or phenyl acetylene, the major products (>56 %) displayed two 5,5′‐linked triazole rings resulting from homocoupling of the 1‐glucosyl‐4‐substituted 1,2,3‐triazoles. The 4‐phenyl substituted compounds (acetylated, O‐unprotected) and the acetylated 4‐acetoxymethyl derivative existed in solution as a single form (d.r.>95:5), as shown by NMR spectroscopic analysis. The two 4‐phenyl substituted structures were unambiguously identified for the first time by X‐ray diffraction analysis, as atropisomers with aR stereochemistry. This represents one of the first efficient and highly atropodiastereoselective approaches to glucose‐based bis‐triazoles as single atropisomers. The products were purified by standard silica gel chromatography. Through Sonogashira or Suzuki cross‐couplings, the 1‐glucosyl‐5‐halogeno‐1,2,3‐triazoles were efficiently converted into a library of 1,2,3‐triazoles of the 1‐glucosyl‐5‐substituted (alkynyl, aryl) type. Attempts to achieve Heck coupling to methyl acrylate failed, but a stable palladium‐associated triazole was isolated and analyzed by 1H NMR and MS. O‐Unprotected derivatives were tested as inhibitors of glycogen phosphorylase. The modest inhibition activities measured showed that 4,5‐disubstituted 1‐glucosyl‐1,2,3‐triazoles bind weakly to the enzyme. This suggests that such ligands do not fit the catalytic site or any other binding site of the enzyme.  相似文献   

7.
An efficient one‐pot synthesis of 1,2,3‐triazoles via the three‐component coupling reaction between propargyl bromide, secondary amines, and 3‐azidopyridine in the presence of CuI as catalyst has been presented. The reaction is highly regioselective and afforded novel 1,4‐disubstituted‐1,2,3‐triazoles in excellent yields by the [3 + 2] Huisgen cycloaddition reaction. This method avoids isolation and handling of terminal acetylenes. The ease of purification has made this methodology clean and safe for the synthesis of 1,2,3‐triazoles with a broad scope.  相似文献   

8.
An efficient synthesis of novel mono and bis‐1,2,3‐triazoles 3′‐azido‐2′‐deoxythymidine (AZT) derivatives via copper(I)‐catalyzed 1,3‐dipolar cycloaddition reaction is described. Starting from AZT and terminal alkyne derivatives, mono and bis‐1,2,3‐triazole AZT derivatives are regioselectively obtained in good yields under mild conditions using CuSO4·5H2O and sodium ascorbate as a catalyst system, and t‐BuOH/H2O (1:1, v/v) as a co‐solvent. The structures of these compounds were elucidated by IR, HR MS and NMR.  相似文献   

9.
A convenient method for one‐pot two‐step 1,3‐dipolar cycloadditon reaction of arylboronic acid, sodium azide followed with terminal alkynes in the presence of 2‐pyrrolecarbaldiminato‐Cu(II) complexes catalyst is reported. Various 1‐aryl‐1,2,3‐triazoles were prepared in 63%–97% yields in water at 30°C without any additives and avoiding the isolation of unstable aryl azides.  相似文献   

10.
Tao He  Min Wang  Pinhua Li  Lei Wang 《中国化学》2012,30(4):979-984
A highly efficient method for the synthesis of unsymmetrical multi‐substituted 1,2,3‐triazoles via a direct Pd‐NHC system catalyzed C(5)‐arylation of 1,4‐disubstituted triazoles, which are readily accessible via "click" chemistry has been developed. It is important to note that C? H bond functionalizations of 1,2,3‐triazoles with a variety of differently substituted aryl iodides and bromides as electrophiles can be conveniently achieved through this catalytic system at significantly milder reaction temperatures of 100°C under air.  相似文献   

11.
1,2,3‐Triazole has become one of the most important heterocycles in contemporary medicinal chemistry. The development of the copper‐catalyzed Huisgen cycloaddition has allowed the efficient synthesis of 1‐substituted 1,2,3‐triazoles. However, only a few methods are available for the selective preparation of 2‐substituted 1,2,3‐triazole isomers. In this context, we decided to develop an efficient flow synthesis for the preparation of various 2‐aryl‐1,2,3‐triazoles. Our strategy involves a three‐step synthesis under continuous‐flow conditions that starts from the diazotization of anilines and subsequent reaction with malononitrile, followed by nucleophilic addition of amines, and finally employs a catalytic copper(II) cyclization. Potential safety hazards associated with the formation of reactive diazonium species have been addressed by inline quenching. The use of flow equipment allows reliable scale up processes with precise control of the reaction conditions. Synthesis of 2‐substituted 1,2,3‐triazoles has been achieved in good yields with excellent selectivities, thus providing a wide range of 1,2,3‐triazoles.  相似文献   

12.
An enolate‐mediated organocatalytic azide–ketone [3+2]‐cycloaddition (OrgAKC) reaction of a variety of enolizable arylacetones and deoxybenzoins with aryl azides was developed for the synthesis of fully decorated 1,4‐diaryl‐5‐methyl(alkyl)‐1,2,3‐triazoles in excellent yields with high regioselectivity at 25 °C for 0.5–6 h. This reaction has an excellent outcome with reference to reaction rate, yield, regioselectivity, operation simplicity, and availability of substrates and catalyst. This reaction has advantages over the previously known metal‐mediated reactions.  相似文献   

13.
The “click chemistry” of using organic azides and terminal alkynes is arguably the most efficient and straightforward route to the synthesis of 1,2,3‐triazoles. In this paper, an alternative and direct access to ethyl 1‐(4‐methoxyphenyl)‐5‐phenyl‐1H‐1,2,3‐triazole‐4‐carboxylate is described. Treatment of ethyl diazoacetate with 4‐methoxyaniline derived aryl imines in the presence of 1,8‐diazabicyclo[5.4.0]undec‐7‐ene provided fully substituted 1,2,3‐triazoles in good to high chemical yields. The base‐mediated reaction tolerates various substituted phenyl imines as well as ethyl diazoacetate or the more bulky diazoacetamide. A reasonable mechanism is proposed that involves the addition of an imine nitrogen atom to the terminal nitrogen atom of the diazo compound, followed by aromatization to give the 1,2,3‐triazole. The presence of the 4‐carboxy group is advantageous as it can be easily transformed into other functional groups.  相似文献   

14.
An efficient, one‐pot, three‐step, regioselective synthesis of 4‐substituted 1‐(2‐phenylselenocyclohexyl)‐1,2,3‐triazoles, involving in situ generation of l‐azido‐2‐phenylselenocyclohexane has been developed via four‐component reaction of phenylselenenyl bromide, cyclohexene, sodium azide and terminal alkynes catalyzed by copper iodide in a mixture of DMF/THF (1:1) at room temperature under mild conditions with simple workup and good yields.  相似文献   

15.
A safe, efficient, and improved procedure for the regioselective synthesis of 1‐(2‐hydroxyethyl)‐1H‐1,2,3‐triazole derivatives under ambient conditions is described. Terminal alkynes reacted with oxiranes and NaN3 in the presence of a copper(I) catalyst, which is prepared by in situ reduction of the copper(II) complex 4 with ascorbic acid, in H2O. The regioselective reactions exclusively gave the corresponding 1,4‐disubstituted 1H‐1,2,3‐triazoles in good to excellent yields. This procedure avoids the handling of organic azides as they are generated in situ, making this already powerful click process even more user‐friendly and safe. The remarkable features of this protocol are high yields, very short reaction times, a cleaner reaction profile in an environmentally benign solvent (H2O), its straightforwardness, and the use of nontoxic catalysts. Furthermore, the catalyst could be recovered and recycled by simple filtration of the reaction mixture and reused for ten consecutive trials without significant loss of catalytic activity. No metal‐complex leaching was observed after the consecutive catalytic reactions.  相似文献   

16.
An efficient proline‐catalyzed synthesis of 4,5‐disubstituted‐N‐sulfonyl‐1,2,3‐triazoles has been accomplished from 1,3‐dicarbonyl compounds and sulfonyl azides. The developed reaction is suitable for various symmetrical and unsymmetrical 1,3‐dicarbonyl compounds, tolerates various functional groups and affords 4,5‐disubstituted‐N‐sulfonyl‐1,2,3‐triazoles in good yield with excellent regioselectivity. Rhodium‐catalyzed denitrogenative functionalization of 4,5‐disubstituted‐N‐sulfonyl‐1,2,3‐triazoles further demonstrates their utility in organic synthesis.  相似文献   

17.
An efficient approach for one‐pot synthesis of biologically active new spiro[chroman‐3,2′‐chromeno[2,3‐b ]furan]‐2,4,4′‐(3′H )‐trione derivatives from tandem Knoevenagel–Michel addition–heterocyclization reaction between 4‐hydroxycumarin and various aldehydes in the presence of N,N,N ,N ′‐tetrabromobenzene‐1,3‐disulfonamide as an efficient catalyst at ambient temperature under solvent‐free conditions was reported. Simple procedure, high yields, easy work‐up, and reusability of the catalyst are the significant advantages of this process.  相似文献   

18.
A series of new α‐aminophosphonates containing 1,3,4‐thiadiazole moiety (4a–l) were synthesized via a simple, efficient, and one‐pot three‐component Kabachnik–Fields reaction of 2‐amino‐5‐ethyl‐1,3,4‐thiadiazole with various aryl/heteroaryl aldehydes and diethylphosphite under solvent‐free microwave irradiation conditions using phosphosulfonic acid, as a reusable and heterogeneous solid acid catalyst. All the title compounds were screened for radical scavenging activity by DPPH and H2O2 methods, and antimicrobial activity against bacteria (Gram‐positive and Gram‐negative) and fungi using the disc diffusion technique. They exhibited potent in vitro antioxidant and moderate antimicrobial activity.  相似文献   

19.
Highly functionalized 4‐bromo‐1,2‐dihydroisoquinolines were synthesized from readily available 4‐(2‐(bromomethyl)phenyl)‐1‐sulfonyl‐1,2,3‐triazoles. A bromonium ylide is proposed as the key intermediate, which can be formed by the intramolecular nucleophilic attack of the benzyl bromide on the α‐imino rhodium carbene formed in the presence of the rhodium catalyst.  相似文献   

20.
The purpose of this work was to synthesize and characterize a new magnetic polymer nanosphere‐supported palladium(II) acetate catalyst for reactions requiring harsh conditions. In this regard, an air‐stable, moisture‐stable and highly efficient heterogenized palladium was synthesized by the coordination of palladium(II) acetate with poly(2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid)‐grafted modified magnetic nanoparticles with a core–shell structure. The structure of the newly developed catalyst was characterized using various techniques. The catalytic activity of the resultant nano‐organometallic catalyst was evaluated in Mizoroki–Heck and Suzuki–Miyaura reactions to afford the corresponding coupling products in good to excellent yields. High selectivity as well as outstanding turnover number (14 143, 4900) and turnover frequency (28 296, 7424) values were recorded for the catalyst in Suzuki–Miyaura and Mizoroki–Heck reactions, respectively. Magnetic separation and recycling of the catalyst for at least six runs became possible without any significant loss of efficiency or any detectable palladium leaching.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号