共查询到20条相似文献,搜索用时 15 毫秒
1.
Fe(NO3)3·9H3O/Fe(HSO4)3 was used as an efficient reagent system for the oxidation of alcohols to their corresponding carbonylcompounds. All reactions were performed in the absence of solvent in good to high yields. Under the same reaction conditions,thiols and sulfides were also converted to their corresponding disulfides and sulfoxides, respectively. 相似文献
2.
Mingliang Ma Yuying Yang Dili Liao Ping Lyu Jinwei Zhang Jianli Liang Lizhi Zhang 《应用有机金属化学》2019,33(2)
A strategy has been developed for the synthesis, characterization and catalysis of magnetic Fe3O4/P(GMA‐EGDMA)‐NH2/HPG‐COOH‐Pd core‐shell structure supported catalyst. The P(GMA‐EGDMA) polymer layer was coated on the surface of hollow magnetic Fe3O4 microspheres through the effect of KH570. The core‐shell magnetic Fe3O4/P(GMA‐EGDMA) modified by ‐NH2 could be grafted with HPG. Then, the hyperbranched glycidyl (HPG) with terminal ‐OH were modified by ‐COOH and adsorbed Pd nanoparticles. The hyperbranched polymer layer not only protected the Fe3O4 magnetic core from acid–base substrate corrosion, but also provided a number of functional groups as binding sites for Pd nanoparticles. The prepared catalyst was characterized by UV–vis, TEM, SEM, FTIR, TGA, ICP‐OES, BET, XRD, DLS and VSM. The catalytic tests showed that the magnetic Fe3O4/P(GMA‐EGDMA)‐NH2/HPG‐COOH‐Pd catalyst had excellent catalytic performance and retained 86% catalytic efficiency after 8 consecutive cycles. 相似文献
3.
Fe(HSO4)3 has been used as an efficient and reeyclable catalyst for the one-pot synthesis of 14-aryl- or alkyl-14H-dibenzo[a,j]xanthene derivatives by the reaction of 2-naphtol and aldehydes. Different types of aromatic and aliphatic aldehydes are used in the reaction and in all cases the products were obtained in good to excellent yields. 相似文献
4.
One‐pot Solvent Free Synthesis of Some Tert‐indolylmethane Amine Derivatives by Fe(HSO4)3 as a Recyclable Catalyst 下载免费PDF全文
Mohammad Rahimizadeh Hossein Eshghi Majid Mokaber‐Esfahani Mostafa Gholizadeh 《中国化学会会志》2014,61(11):1265-1269
Solvent‐free synthesis of 3‐substituted indole derivatives by a one‐pot three‐component coupling reaction between aldehyde, N‐alkyl aniline and indole by Fe(HSO4)3 catalyzed is described. The noticeable features of this protocol are the simplicity of the procedure, easy synthesized, recyclable and inexpensive catalyst, no organic solvent and high yields in relatively short reaction times. 相似文献
5.
Farhad Shirini Mohammad Ali Zolfigol Abdol-Reza Abri 《中国化学快报》2007,18(7):803-806
Alcohols are selectively and efficiently protected as their tetrahydropranyl ethers in the presence of a catalytic amount of Fe(HSO4)3 in good to high yields. All reactions are performed under mild and completely heterogeneous reaction conditions. 相似文献
6.
Davood Habibi Somayyeh Heydari Antonio Gil Mina Afsharfarnia Alireza Faraji Roya Karamian Mostafa Asadbegy 《应用有机金属化学》2018,32(2)
The Fe3O4 magnetic particles were modified with 1,10‐phenanthroline‐5,6‐diol (Phen) and the related Mn complex (Fe3O4@Phen@Mn) synthesized as a heterogeneous catalyst to be used for the one‐pot three‐component synthesis of various tetrazoles. The catalysts were characterized by several methods, such as the elemental analysis, FT‐IR, X‐ray powder diffraction, dispersive X‐ray spectroscopy, scanning electron microscopy, transmission electron microscopy, dynamic light scattering, thermogravimetric‐differential thermal analysis, vibrating sample magnetometer and X‐ray photoelectron spectroscopy. In addition, the antioxidant and antibacterial activities of the catalyst and its Phen ligand were in vitro screened with 2,2‐diphenyl‐1‐picrylhydrazyl by free radical scavenging methods. Results showed that the synthesized compounds possess strong antioxidant activity (IC50; 0.172 ± 0.005 mg ml?1) as well as a good antibacterial potential in comparison to standards. 相似文献
7.
Preparation of magnetic Fe3O4/P (GMA‐DVB)‐PEI/Pd highly efficient catalyst with core‐shell structure
Mingliang Ma Yuying Yang Yanyan Liu Wenting Li Guopeng Chen Yong Ma Ping Lyu Shunhe Li Yubao Wang Guanglei Wu 《应用有机金属化学》2019,33(5)
In this paper, a simple route for palladium (Pd) nanoparticles attached to the surface of hollow magnetic Fe3O4/P (GMA‐DVB)‐polyethyleneimine (PEI) microspheres was established. Due to the large amount of imidogen groups and tertiary amine groups presenting in the PEI, Pd2+ ions could be anchored to the support by complexation with a polyfunctional organic ligand. Thereafter, a magnetic Pd catalyst having a high loading amount and good dispersibility was obtained by reducing Pd2+ ions. Afterwards, the prepared catalyst was characterized by TEM, SEM, FTIR, XRD, TGA, VSM, and UV–vis in detail. Ultimately, their catalytic activity was evaluated using the reduction of 4‐nitrophenol (4‐NP). Research showed that the Fe3O4/P (GMA‐DVB)‐PEI/Pd catalyst possessed high catalytic performances for the reduction of 4‐NP with a conversion rate of 98.43% within 540 s. Furthermore, the catalyst could be easily recovered and reused at least for nine successive cycles. 相似文献
8.
Copper immobilized on aminated ferrite nanoparticles by 2‐aminoethyl dihydrogen phosphate (Fe3O4@AEPH2‐CuII) catalyses the conversion of aldoximes to nitriles 下载免费PDF全文
CuII immobilized on aminated ferrite nanoparticles by 2‐aminoethyl dihydrogen phosphate (Fe3O4@AEPH2‐CuII) was prepared and characterized using FT‐IR, TGA, TEM, EDX, VSM, XRD, CHN and ICP techniques. The easily prepared heterogeneous nanocatalyst demonstrated a significant catalytic performance for the transformation of aldoximes to nitriles that is far superior to previously reported methods. The reaction allows for the conversion of a wide variety of aldoximes including aromatic, aliphatic and heterocyclic aldoximes in good to excellent yields (50–98%). High efficiency, mild reaction conditions, easy work‐up, operational simplicity, simple purification of products and safe handling of the catalyst are important advantages of this method. In addition, the environmentally benign heterogeneous nanocatalyst can be easily recovered from reaction mixtures using an external magnet and reused several times without any loss of activity. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
9.
Four‐component condensation reaction of aromatic aldehydes, dimedone, ethyl acetoacetate and ammonium acetate in the presence of a catalytic amount of ionic liquid on silica‐coated Fe3O4 nanoparticles as a heterogeneous, recyclable and very efficient catalyst provided the corresponding polyhydroquinoline derivatives in good to excellent yields in ethanol under reflux condition. The [Fe3O4@SiO2@(CH2)3Py]HSO4? catalyst was characterized using various techniques such as scanning electron microscopy, powder X‐ray diffraction, thermogravimetric analysis, vibrating sample magnetometry and Fourier transform infrared spectroscopy. Furthermore, the recovery and reuse of the catalyst were demonstrated seven times without detectable loss in activity. 相似文献
10.
Fe3O4 magnetic nanoparticles (MNPs) were functionalized by aminopropylsilane and reacted with aromatic aldehyde, and Fe3O4‐Si‐[CH2]3‐N=CH‐Aryl and Fe3O4‐Si‐(CH2)3‐NH‐CH2‐Aryl MNPs were prepared as novel magnetic nanocatalysts. Fourier transform infrared (FT‐IR), X‐ray diffraction (XRD), and scanning and transmission electron microscopy (SEM and TEM) were used to identify the MNPs. The catalytic activity of the MNPs was evaluated in the one‐pot synthesis of some novel poly‐substituted pyridine derivatives. 相似文献
11.
《应用有机金属化学》2017,31(12)
A simple, green and efficient protocol for the one‐pot four‐component synthesis of pyrano[2,3‐c ]pyrazole derivatives produced from reaction between aryl aldehydes, ethyl acetoacetate, malononitrile and hydrazine hydrate in the presence of nano magnetic piperidinium benzene‐1,3‐disulfonate was synthesized in water at 60 °C. The Fe3O4@SiO2 nanoparticle‐supported IL was designed and synthesized. The present process offers advantages such as clean reaction, short reaction time, good to excellent yield, easy purification and easy recoverable catalyst. 相似文献
12.
In this study, the immobilization of sulfonic acid on silica‐layered magnetite was carried out by the reaction of ClSO3H with silica‐layered magnetite. The prepared magnetic nanoparticles of Fe3O4@SiO2‐SO3H were then characterized using scanning electron microscopy, energy dispersive X‐ray spectroscopy, X‐ray diffraction, Fourier transform infrared spectroscopy, vibrating sample magnetometry, and transmission electron microscopy. The sulfonated nanocomposite exhibited excellent catalytic activity and reusability in the reduction of various aldoximes and ketoximes with NaBH3CN in the presence of ZrCl4. All reactions were carried out under solvent‐free conditions (r.t. or 75–80°C) within 3–70 min to afford amines in high to excellent yields. 相似文献
13.
Immobilized sulfuric acid on magnetic Fe3O4 nanoparticles (Fe3O4 MNPs‐OSO3H) as a new solid acid nanocomposite was successfully synthesized and its catalytic activity in a series of condensation reactions was studied. High catalytic activity, simple separation from reaction mixture by an external magnet and good reusability are several eco‐friendly advantages of this catalytic system. It is noteworthy that this catalytic system is applicable to a wide range of spectrum of aromatic aldehydes, and the desired products were obtained in good to excellent yields under mild conditions. The use of ecofriendly solvents makes also this synthetic protocol ideal and fascinating from the environmental point of view. 相似文献
14.
《应用有机金属化学》2017,31(5)
A new, green and reusable nanomagnetic heterogeneous catalyst, namely Fe3O4@TiO2@O2PO2(CH2)NHSO3H, was synthesized and fully characterized using suitable techniques such as infrared spectroscopy, X‐ray diffraction, scanning and transmission electron microscopies, thermogravimetry, vibrating sample magnetometry and energy‐dispersive X‐ray spectroscopy. The applicability of the constructed heterogeneous core–shell catalyst as a promoter was successfully explored for the synthesis of 2‐amino‐4,6‐diphenylnicotinonitrile derivatives upon the reaction of a good range of aromatic aldehydes, acetophenone derivatives, malononitrile and ammonium acetate. The desired products were obtained with good to high yields in short reaction times under solvent‐free conditions. The suggested mechanism offers an anomeric‐based oxidation route to the products in the final step of the synthetic pathway. 相似文献
15.
A green and efficient method for synthesis of benzimidazoles using nano‐Fe3O4 in PEG‐400/H2O aqueous system under ambient conditions at room temperature 下载免费PDF全文
In this paper, a green and facile protocol was described which was efficient for synthesis of benzimidazoles using nano‐Fe3O4 catalyst with continuous bubbling of air as the oxidant in PEG‐400/H2O aqueous system at room temperature. This protocol afforded the target products in good to excellent yields and the catalytic system could be recycled and reused without significant loss of catalytic activity. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
16.
Polyethersulfone (PES) and poly(1‐vinylpyrrolidone) (PVP) were used to prepare ultrafiltration membranes with grafted Fe3O4 magnetic nanoparticles (PVP‐g‐Fe3O4@SiO2). The structure of synthesized PVP‐g‐Fe3O4@SiO2 was confirmed by FT‐IR and SEM analysis. Physical properties of blend membranes such as thermal resistance, Tensile strength, water uptake, and hydrophilicity were also investigated. Blended membranes of PES/PVP‐g‐Fe3O4@SiO2 have exhibited higher thermal resistance due to increasing the modified nanoparticle content. The hydrophilicity of the synthesized PES/PVP‐g‐Fe3O4@SiO2 membranes also improved by increasing the PVP‐g‐Fe3O4@SiO2 content. As expected, increasing the hydrophilicity of blended membrane, caused enhancement of fouling resistance in membranes. Results showed that the content of PVP‐g‐Fe3O4@SiO2 has different effects on the properties of synthesized composite membranes. Despite increasing the content of PVP‐g‐Fe3O4@SiO2 has a negative effect on elongation, positive effects on maximum stress was observed. Moreover, the water uptake of synthesized membranes was significantly enhanced in comparison to other similar studies. 相似文献
17.
18.
An effective approach of one‐pot catalytic Strecker reaction between aromatic aldehydes, aniline or toluidine and trimethylsilyl cyanide in the presence of amine‐functionalized Fe3O4@SiO2 nanoparticles grafted with gallic acid (GA) as a powerful catalyst was developed. The fabricated reusable catalyst demonstrated high efficiency in the synthesis of α‐aminonitriles along with facile work‐up procedure. Fe3O4@SiO2‐NH2‐GA was characterized by Fourier transform‐infrared spectroscopy, scanning electron microscopy image, vibrating‐sample magnetometer curve, energy‐dispersive X‐ray analysis and thermogravimetric analysis. 相似文献
19.
In this study, the capability of the prepared polyaniline-coated Fe(3) O(4) nanoparticles for magnetic solid-phase extraction of three parabens from environmental wastewater, cream, and toothpaste samples is presented. Synthesized Fe(3) O(4) nanoparticles were coated with sulfate-doped polyaniline via polymerization of aniline in the presence of Fe(3) O(4) nanoparticles and sulfuric acid. Here, polyaniline-coated Fe(3) O(4) nanoparticles are presented as anion exchange sorbent, which extract anionic form of parabens via anion exchange with dopant of polyaniline. The experimental conditions affecting extraction efficiency were further studied and optimized. The experimental results showed that maximum extraction efficiency can be obtained at 70 mL sample solution of pH 8, extraction and desorption times of 2 and 1 min, respectively, 100 μL of 3% (v/v) acetic acid in acetonitrile as eluent, and 100 mg of the adsorbent. Under these conditions, the linear dynamic ranges were 0.5-100 μg/L with good correlation coefficients (0.998-0.999). The detection limits were in the range of 0.3-0.4 μg/L and the relative standard deviations were less than 2.4 (n = 5) for the three parabens. Finally, this fast and efficient method was further employed for determination of target analytes in cream, toothpaste, and environmental wastewater samples and satisfactory results were obtained. 相似文献
20.
《应用有机金属化学》2017,31(7)
Tribenzylammonium tribromide supported onto magnetic nanoparticles (Br3‐TBA‐Fe3O4) as a bromine source was successfully synthesized and characterized using Fourier transform infrared spectroscopy, thermogravimetric analysis, X‐ray diffraction, scanning electron microscopy, energy‐dispersive X‐ray spectroscopy and vibrating sample magnetometry. The synthesized catalyst is shown to be a versatile and highly efficient heterogeneous catalyst for the Knoevenagel condensation and synthesis of 2,3‐dihydroquinazolin‐4(1H )‐one and polyhydroquinoline derivatives. To the best of the authors' knowledge, this is the first report of the use of a bromine source immobilized on Fe3O4 nanoparticles as a magnetically separable catalyst for these reactions. The nanosolid catalyst can be magnetically recovered and reused readily several times without significant loss in catalytic efficiency. 相似文献