共查询到20条相似文献,搜索用时 0 毫秒
1.
The Pd nanoparticles (Pd NPs) embedded on magnetically retrievable carboxymethylcellulose/Fe3O4 (Pd0@CMC/Fe3O4) organic/inorganic hybrid were prepared via the conventional simple process. The presence of the hydroxyl and carboxyl groups within the framework of the magnetic hybrid enables the facile preparation and stabilization of Pd NPs in this organic/inorganic hybrid. This hybrid catalyst was very effective in the Suzuki – Miyaura reaction of a variety of aryl halides with arylboronic acid to afford excellent product yields. The catalyst showed good stability and could be easily recovered with an external magnetic field and reused for several times without a significant loss in its catalytic activity. Furthermore, the Pd0@CMC/Fe3O4 hybrid catalyst was fully characterized by UV–Vis, FT–IR, XRD, SEM, EDX, TEM, XPS and TGA techniques. The hot filtration test suggests that a homogeneous mechanism is operative in Suzuki – Miyaura reaction. 相似文献
2.
《应用有机金属化学》2017,31(4)
A water‐soluble, cyclodextrin‐supported palladium complex (DACH‐Pd‐β‐CD) catalytic system was designed and synthesized, which can efficiently catalyze Suzuki–Miyaura cross‐coupling reactions between aryl halides and arylboronic acid in water under mild conditions. The catalyst was successfully characterized using the methods of transmission electron microscopy, energy‐dispersive X‐ray spectrometry, X‐ray diffraction, thermogravimetric analysis, and Fourier transform infrared and NMR spectroscopies. Furthermore, the catalyst can be easily separated from the reaction mixture and still maintain high catalytic activity after ten cycles. No leaching of palladium into the reaction solution occurred. The advantages of green solvent (water), short reaction times (2–6 h), low catalyst loading (0.001 mol%), excellent yields (up to 99%) and reusability of the catalyst mean it will have potential applications in green chemical synthesis. 相似文献
3.
Someswara Rao Kosuru Hsin‐Yu Lai Chien‐Yi Yang Gopal Chandru Senadi Yi‐Chun Lai Hsuan‐Ying Chen 《中国化学会会志》2019,66(1):110-113
The palladacycle complex [LsPdOAc]2 bearing 2‐phenyl benzothiazole was synthesized and characterized by NMR and X‐ray crystallography. [LsPdOAc]2 was used as a catalyst in the Suzuki–Miyaura cross coupling reaction of 4‐bromotoluene with phenylboronic acid, which resulted in a conversion of >90% with 5 mol% of the Pd complex within 10 min at 60°C. 相似文献
4.
A porphyrin‐based polymer with high surface area was synthesized using 5,10,15,20‐tetraphenylporphyrin through a one‐pot Friedel–Crafts alkylation reaction. Pd(II) was successfully supported on this polymer. This strategy provides an easy approach to produce highly stable Pd–porphyrin‐based polymer. The resulting Pd catalyst was characterized using Fourier transform infrared and X‐ray photoelectron spectroscopies, thermogravimetric analysis, scanning and transmission electron microscopies and N2 adsorption–desorption measurements. This porphyrin‐based polymer‐supported Pd was used as a heterogeneous catalyst for Suzuki–Miyaura coupling reaction in water. The results demonstrated that this Pd catalyst indeed exhibited excellent catalytic activity and recycling performance in water, even for inactive aryl chloride substrate. A new heterogeneous strategy for catalyzing the Suzuki–Miyaura reaction in water is provided. 相似文献
5.
《应用有机金属化学》2017,31(8)
Graphene oxide was functionalized with benzimidazole for palladium immobilization. The resultant graphene–benzimidazole‐supported palladium composite (G‐BI‐Pd) was characterized using infrared and Raman spectroscopies, transmission electron microscopy and energy‐dispersive X‐ray spectroscopy. G‐BI‐Pd showed excellent catalytic activity and fast reaction kinetics in the aqueous‐phase Suzuki–Miyaura reaction of aryl iodides and bromides with phenylboronic acid under relatively mild conditions (5–25 min, 80 °C). The catalyst can be used several times without any significant loss of its catalytic activity. 相似文献
6.
K. Manjunatha Tuhin S. Koley Vishal Kandathil Ramesh B. Dateer Geetha Balakrishna B. S. Sasidhar Shivaputra A. Patil Siddappa A. Patil 《应用有机金属化学》2018,32(4)
As a continuation of our efforts to develop new heterogeneous nanomagnetic catalysts for greener reactions, we identified a Schiff base–palladium(II) complex anchored on magnetic nanoparticles (SB‐Pd@MNPs) as a highly active nanomagnetic catalyst for Suzuki–Miyaura cross‐coupling reactions between phenylboronic acid and aryl halides and for the reduction of nitroarenes using sodium borohydride in an aqueous medium at room temperature. The SB‐Pd@MNPs nanomagnetic catalyst shows notable advantages such as simplicity of operation, excellent yields, short reaction times, heterogeneous nature, easy magnetic work up and recyclability. Characterization of the synthesized SB‐Pd@MNPs nanomagnetic catalyst was performed with various physicochemical methods such as attenuated total reflectance infrared spectroscopy, UV–visible spectroscopy, inductively coupled plasma atomic emission spectroscopy, energy‐dispersive X‐ray spectroscopy, field‐emission scanning electron microscopy, transmission electron microscopy, powder X‐ray powder diffraction, thermogravimetric analysis and Brunauer–Emmett–Teller surface area analysis. 相似文献
7.
Nasser Iranpoor Habib Firouzabadi Afsaneh Safavi Somayeh Motevalli Mohammad M. Doroodmand 《应用有机金属化学》2012,26(8):417-424
Nanoparticles of palladium were supported on SiO2 by chemical vapor deposition technique. The obtained Pd nanocatalyst was characterized by various techniques. This catalyst was found to be very efficient for the selective cross‐coupling of hydroxyl‐substituted aryl iodides and bromide with arylboronic acids in water at room temperature to produce the corresponding hydroxyl‐substituted biaryls. Coupling of phenylboronic acid with aryl iodides and bromides carrying substituents other than hydroxy group was also performed efficiently in refluxing ethanol. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
8.
《应用有机金属化学》2017,31(12)
A new bis(N ‐heterocyclic carbene) (NHC) palladium complex supported on silica coated magnetic nanoparticles (MNPs) was prepared using the reaction of synthesized Pd‐NHC complex with MNPs. The Pd‐NHC complex was prepared using the reaction of a hydroxyl‐functionalized bis‐imidazolium ionic liquid. The Pd‐NHC organometallic complex was used as a heterogeneous recyclable and active catalyst in the Suzuki‐Miyaura reaction and various aryl halides were coupled with arylboronic acids in order to synthesize diverse biaryls in good to excellent yields. The prepared catalyst was characterized by use of some different microscopic and spectroscopic techniques including elemental analysis, FT‐IR spectroscopy, diffuse reflectance UV–Vis spectrophotometery, scanning electron microscopy (SEM), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM) and X‐ray diffraction (XRD). The Pd‐NHC catalyst system is a magnetic reusable catalyst and it can be separated from the reaction mixture using an external magnetic field. The catalyst was reusable in the Suzuki‐Miyaura coupling reaction at least for 6 times without significant decreasing in its catalytic activity. 相似文献
9.
Pd(l‐proline)2 complex: an efficient catalyst for Suzuki–Miyaura coupling reaction in neat water 下载免费PDF全文
An efficient catalytic system for Suzuki–Miyaura coupling reactions in neat water has been developed by using a water‐soluble Pd(l ‐proline)2 catalyst. Under the optimized conditions, various biaryl compounds were obtained in good to excellent yields and a wide range of functional groups on the tested substrates were well tolerated. The catalytic system could be reused at least six times with no significant loss in its activity. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
10.
Metallomicelles of palladium(II) complex 4 are found to be an efficient catalyst for Suzuki–Miyaura reactions of aryl bromides substituted with a long alkyl chain and arylboronic acids at 80 °C in neat water. The reactions proceed smoothly to generate the corresponding biaryl compounds in moderate to excellent yields. Various biphenyl derivatives were successfully obtained by complex 4 catalysis of the Suzuki–Miyaura reactions in the absence of any surfactants in neat water. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
11.
Carboxymethylcellulose‐supported palladium nanoparticles generated in situ from palladium(II) carboxymethylcellulose as an efficient and reusable catalyst for ligand‐ and base‐free Heck–Matsuda and Suzuki–Miyaura couplings 下载免费PDF全文
A novel palladium(II) carboxymethylcellulose (CMC‐PdII) was prepared by direct metathesis from sodium carboxymethylcellulose and PdCl2 in aqueous solution. Its catalytic activities were explored for Heck–Matsuda reactions of aryldiazonium tetrafluoroborate with olefins, and Suzuki–Miyaura couplings of aryldiazonium tetrafluoroborate with arylboronic acid. Both reactions proceeded at room temperature in water or aqueous ethanol media without the presence of any ligand or base, to provide the corresponding cross‐coupling products in good to excellent yields under atmospheric conditions. The CMC‐PdII and carboxymethylcellulose‐supported palladium nanoparticles (CMC‐Pd0) formed in situ in the reactions were characterized using Fourier transform infrared spectroscopy, X‐ray diffraction, inductively coupled plasma atomic emission spectrometry, and scanning and transmission electron microscopies. The homogeneous nature of the CMC‐Pd0 catalyst was confirmed via Hg(0) and CS2 poisoning tests. Moreover, the CMC‐Pd0 catalyst could be conveniently recovered by simple filtration and reused for at least ten cycles in Suzuki–Miyaura reactions without apparently losing its catalytic activity. The catalytic system not only overcomes the basic drawbacks of homogeneous catalyst recovery and reuse but also avoids the need to fabricate palladium nanoparticles in advance. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
12.
《应用有机金属化学》2017,31(5)
This study describes the synthesis of PdCu, PdCu/reduced graphene oxide and PtPdCu nanoparticle thin films via a simple reduction of organometallic precursors including [PtCl2(cod)] and [PdCl2(cod)] (cod = cis ,cis ‐1,5‐cyclooctadiene) complexes, in the presence of [Cu(acac)2] (acac = acetylacetonate) complex at toluene–water interface. The structure and morphology of the thin films were characterized using energy‐dispersive analysis of X‐rays, X‐ray diffraction and transmission electron microscopy techniques. Our studies show that all of these nanoparticles are suitable for the Suzuki–Miyaura coupling (SMC) reaction in water. PtPdCu and PdCu thin films showed higher catalytic activity compared to Pd thin film in the SMC reaction due to the appropriate interaction among palladium, platinum and copper metals. 相似文献
13.
Axel Houdayer Raphaël Schneider Denis Billaud Jaafar Ghanbaja Jacques Lambert 《应用有机金属化学》2005,19(12):1239-1248
A novel route to prepare polyaniline (PANI)‐supported Pd(0) nanoparticles by a one‐pot chemical route is presented. Nanosized Pd(0) particles were first prepared by reduction of Pd(OAc)2 using t‐BuONa activated sodium hydride in refluxing THF. A ligand exchange with aniline on t‐BuONa‐stabilized Pd(0) particles yielded aniline‐stabilized particles. Pd(0)/PANI nanocomposites were finally obtained by polymerizing aniline‐stabilized Pd(0) particles using ammonium persulfate. Nanocomposites were characterized by transmission electron microscopy, X‐ray diffraction and X‐ray photoelectron spectroscopy. Results show that this one‐pot experimental route is successful in producing hybrid materials constituted of Pd(0) nanoparticles stabilized by PANI due to the strong binding of PANI amine groups to Pd(0) particles. TEM images of the nanohybrids show that metal particles with diameters of ca. 4.9 nm are homogeneously dispersed in PANI. The preliminary results indicate that the Pd(0) particles supported on PANI behave as efficient heterogeneous catalysts in the Heck and Suzuki–Miyaura reactions of aryl iodides. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
14.
《应用有机金属化学》2017,31(12)
Functionalized natural polysaccharides are attractive supports for colloidal metal nanocatalysts due to their abundance, cheapness, biocompatibility and biodegradability. In this study, isocyanate–functionalized starch was prepared by treating with diisocyanate. Polyethylenimine grafted onto starch via the formation of urea linker. The palladium nanoparticles deposited starch PEIS@Pd(0) was obtained through a chelating–in situ reduction procedure. Characterization of these materials was done using Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, X–ray diffraction, and inductive coupled plasma atomic emission spectrometry. The catalytic activity of PEIS@Pd(0) was then tested in two series of model reactions: Suzuki–Miyaura coupling and transfer hydrogenation. The catalyst could be recovered by simple filtration and was reused for five times without significant loss of catalytic activity, which confirmed the good stability of the catalyst. 相似文献
15.
Palladium complex containing two sterically hindered ligands as highly efficient catalyst for Suzuki–Miyaura reaction 下载免费PDF全文
A new palladium(II) complex containing two sterically hindered ligands, a P,P‐bonded diphosphine and N,N‐bonded Schiff base, within the same coordination sphere has been synthesized and investigated as a catalyst for the Suzuki–Miyaura cross‐coupling reactions of aryl halides with arylboronic acids. The reaction was highly efficient with aryl bromides in water at room temperature and aryl chlorides in dimethylformamide under relatively mild conditions. Excellent yields of coupling products were obtained for a wide range of aryl halides including heteroaryl halides with a low loading of catalyst. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
16.
The Suzuki–Miyaura reaction of aryl bromides with benzeneboronic acid catalyzed by bis(chloro)(2‐pyridylquinoxaline)palladium(II) was investigated. The scope of the bis(chloro)(2‐pyridylquinoxaline)palladium(II) was determined in toluene at 80 °C using KOH as base. Using a 0.1% molar ratio of bis(chloro)(2‐pyridylquinoxaline)palladium(II) C1 as a catalyst, aryl bromides reacted with benzeneboronic acid to afford diaryl derivatives in excellent yield. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
17.
Pd nanoparticles immobilized on PNIPAM–halloysite: highly active and reusable catalyst for Suzuki–Miyaura coupling reactions in water 下载免费PDF全文
Myeng Chan Hong Hyunseok Ahn Myung Chan Choi Yongwoo Lee Jongsik Kim Hakjune Rhee 《应用有机金属化学》2014,28(3):156-161
Poly(N‐isopropylacrylamide)–halloysite (PNIPAM‐HNT) nanocomposites exhibited inverse temperature solubility with a lower critical solution temperature (LCST) in water. Palladium (Pd) nanoparticles were anchored on PNIPAM‐HNT nanocomposites with various amounts of HNT from 5 to 30 wt%. These Pd catalysts exhibited excellent reactivities for Suzuki–Miyaura coupling reactions at 50–70 °C in water. In particular, Pd anchored PNIPAM/HNT (95:5 w/w ratio) nanocomposites showed excellent recyclability up to 10 times in 96% average yield by simple filtration. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
18.
The purpose of this work was to synthesize and characterize a new magnetic polymer nanosphere‐supported palladium(II) acetate catalyst for reactions requiring harsh conditions. In this regard, an air‐stable, moisture‐stable and highly efficient heterogenized palladium was synthesized by the coordination of palladium(II) acetate with poly(2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid)‐grafted modified magnetic nanoparticles with a core–shell structure. The structure of the newly developed catalyst was characterized using various techniques. The catalytic activity of the resultant nano‐organometallic catalyst was evaluated in Mizoroki–Heck and Suzuki–Miyaura reactions to afford the corresponding coupling products in good to excellent yields. High selectivity as well as outstanding turnover number (14 143, 4900) and turnover frequency (28 296, 7424) values were recorded for the catalyst in Suzuki–Miyaura and Mizoroki–Heck reactions, respectively. Magnetic separation and recycling of the catalyst for at least six runs became possible without any significant loss of efficiency or any detectable palladium leaching. 相似文献
19.
《应用有机金属化学》2017,31(11)
A simple and green method for the synthesis of palladium nanoparticles using an aqueous extract of Sapindus mukorossi seed has been demonstrated. The synthesized nanoparticles were characterized using UV–visible spectroscopy, powxder X‐ray diffraction, energy‐dispersive X‐ray analysis and transmission electron microscopy. The nanocatalyst was successfully utilized in an efficient Suzuki–Miyaura cross‐coupling reaction at room temperature. 相似文献
20.
Bahareh Heidari Majid M. Heravi Mohammad Reza Nabid Roya Sedghi Seyyed Emad Hooshmand 《应用有机金属化学》2019,33(1)
A novel nanocatalyst was designed and prepared. Initially, the surface of magnetic graphene oxide (M‐GO) was modified using thionyl chloride, tris(hydroxymethyl)aminomethane and acryloyl chloride as linkers which provide reactive C═C bonds for the polymerization of vinylic monomers. Separately, β‐cyclodextrin (β‐CD) was treated with acryloyl chloride to provide a modified β‐CD. Then, in the presence methylenebisacrylamide as a cross‐linker, monomers of modified β‐CD and acrylamide were polymerized on the surface of the pre‐prepared M‐GO. Finally, palladium acetate and sodium borohydride were added to this composite to afford supported palladium nanoparticles. This fabricated nanocomposite was fully characterized using various techniques. The efficiency of this easily separable and reusable heterogeneous catalyst was successfully examined in Suzuki–Miyaura cross‐coupling reactions of aryl halides and boronic acid as well as in modified Suzuki–Miyaura cross‐coupling reactions of N‐acylsuccinimides and boronic acid in green media. The results showed that the nanocatalyst was efficient in coupling reactions for direct formation of the corresponding biphenyl as well as benzophenone derivatives in green media based on bio‐based solvents. In addition, the nanocatalyst was easily separable, using an external magnet, and could be reused several times without significant loss of activity under the optimum reaction conditions. 相似文献