首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nanostructures of a new coordination polymer of divalent lead with the ligand 2, 9‐dimethyl‐1, 10‐phenanthroline (dmp) containing the first Pb2‐(μ‐ClO4)2 motif, [Pb2(dmp)2(μ‐N3)2(μ‐ClO4)2]n ( 1 ), was synthesized by a sonochemical method that produces the coordination polymers at nano size. The new nanostructure was characterized by scanning electron microscopy, X‐ray powder diffraction, IR, 1H NMR and 13C NMR spectroscopy, and elemental analysis. Compound 1 was structurally characterized by single‐crystal X‐ray diffraction and the single‐crystal X‐ray data shows that the coordination number of PbII ions is six, (PbN4O2), with two N‐donor atoms from aza‐aromatic base ligands and four O‐donors from two perchlorate anions and two N‐donors from two azide anions. It has a “stereo‐chemically active” electron lone pair, and the coordination sphere is hemidirected. The supramolecular features in these complexes are guided and controlled by weak directional intermolecular interactions. The chains interact with each other through π–π stacking interactions creating a 3D framework. The structure of the title complex was optimized by density functional theory calculations. Calculated structural parameters and IR spectra for the title complex are in agreement with the crystal structure. The PbO nanoparticles were obtained by thermolysis of 1 at 180 °C with oleic acid as a surfactant. The average diameter of the nanoparticles was estimated by the Scherrer equation to be 23 nm. The morphology and size of the prepared PbO samples were further observed using SEM.  相似文献   

2.
This study reports the structural and spectroscopic characterization of a novel metal organic compound formulated as [Fe (bpy)3] [Fe (dipic)2]2.7H2O ( 1 ) (dipic = pyridine‐2,6‐dicarboxylate and bpy = 2,2‐bipyridine). 1 was investigated by elemental analysis, FT‐IR spectroscopy, powder X‐ray diffraction and single crystal X‐ray diffraction (SC‐XRD), which revealed a triclinic structure of expected composition. Thermal degradation of 1 was also investigated. Complex 1 was used as a precursor to prepare superparamagnetic nanoparticles of Fe3O4 by thermal analysis. The obtained Fe3O4 was characterized by Fourier transformed infrared spectroscopy (FT‐IR), powder X‐ray diffraction (XRD) and scanning electron microscopy (SEM). Fe3O4 nanoparticles were used as a nano‐adsorbent to remove Cd2+ from water at room temperature. The results showed that this nano‐adsorbent is effective in removing Cd2+ from contaminated water sources, and that the maximal effectivity of adsorption occurs at pH = 6. Magnetic measurements of complex 1 and Fe3O4 nanoparticles at room temperature revealed paramagnetic and superparamagnetic behavior, respectively.  相似文献   

3.
A new nanostructured coordination polymer of divalent lead with the ligand 2,9‐dimethyl‐1,10‐phenanthroline (dmp), [Pb(dmp)(μ‐N3)(μ‐NO3)]n ( 1 ), was synthesized by sonochemical methods. The polymer was characterized by scanning electron microscopy, X‐ray powder diffraction, IR, 1H NMR, and 13C NMR spectroscopy, and elemental analyses. Compound 1 was structurally characterized by single‐crystal X‐ray diffraction. The single‐crystal analysis shows that the coordination number of PbII ions is seven, (PbN4O3) has a “stereo‐chemically active” electron lone pair, and the coordination sphere is hemidirected. The chains interact with each other through π–π stacking interactions to create a 3D framework. The structure of the title complex was optimized by density functional calculations. The calculated structural parameters and the IR spectrum of the title complex are in agreement with the crystal structure.  相似文献   

4.
Two novel, stable PdII complexes, compounds 3 and 4 , of two 3‐hydroxypyridine‐2‐carbaldehyde thiosemicarbazones, 1 and 2 , resp., were prepared from Li2PdCl4. The single‐crystal X‐ray structure of complex 3 (= [Pd( 2 )Cl]) shows that the ligand monoanion coordinates in a planar conformation to the metal via the pyridyl N‐, the imine N‐, and the thiolato S‐atoms. Intermolecular H‐bonds, π–π, and CH ? ? ? π interactions lead to a two‐dimensional supramolecular assembly. The electronic, IR, UV/VIS, and NMR spectroscopic data of the two complexes are reported, together with their electrochemical properties. A sophisticated experimental procedure was used to determine the multiple dissociation constants of the ligands 1 and 2 by UV/VIS titration.  相似文献   

5.
A novel energetic coordination compound [Co(DAT)6](ClO4)2 has been synthesized by using 1,5‐diaminotetrazole (DAT) as a ligand and its structure has been characterized using X‐ray single crystal diffraction, elemental analysis and FT‐IR spectroscopy. The central cobalt(II) cation is coordinated by six N atoms from six DAT molecules to form a six‐coordinated and distorted octahedral structure. Di‐dimension layer structure was formed by the extensive intermolecular hydrogen bonds between DAT ligands and ClO?4 anions along a‐axis and b‐axis. Thermal decomposition mechanism of [Co(DAT)6](ClO4)2 was investigated based on differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and Fourier transform infrared (FT‐IR) spectra. The kinetic parameters of the first exothermic process were studied by applying the Kissinger's and Ozawa‐Doyle's methods. Additionally, the sensitivities of this complex were tested. The results of all the studies show that [Co(DAT)6](ClO4)2 has an extreme potential application as an energetic material.  相似文献   

6.
A novel 1D copper(II) helical chain is constructed through the connection of tetranuclear copper(II) units [Cu4(L)(Py)4] (H8L=N,N′‐(BINOL‐3,3′‐dicarboxyl)‐disalicylhydrazide, where BINOL is 1,1′‐binaphthalenyl‐2,2′‐diol, py=pyridine) by weak coordination‐driven self‐assembly, and characterized by IR, single crystal X‐ray diffraction, thermogravimetric analysis, and X‐ray power diffraction analysis. Interestingly, the helical chains are packed in an alternating left‐(M) and right‐handed (P) chirality, the orientation of the helices was determined by the axial chirality of the ligand. The complex shows antiferromagnetic interactions between the copper centers.  相似文献   

7.
Novel cobalt complex of 4‐amino‐N‐(6‐chloropyridazin‐3‐yl)benzene sulfonamide (sulfachloropyridazine) has been synthesized and characterized by elemental analysis, FT‐IR spectroscopy and magnetic susceptibility (VSM). Cobalt complex of Sulfachloropyridazine (Co‐SCP) crystallized in monoclinic space group P21/n with Z = 4. The structure is solved by direct method and refined to R = 0.099 for 4720 reflections with I ?4σ(I). The results of FT‐IR spectra suggest the binding of cobalt atom to the sulfonamide ligand which is in agreement with the crystal structure determination. In crystal structure, molecule is linked via, C‐H … π, C‐Cl … π and π … π intermolecular interactions. The computational studies like the optimization energy and root means square deviation compare with single crystal structure, frontier molecular orbital (Homo‐Lumo energy) and binding energy of the Co‐SCP has been carried out using DFT/B3LYP level of theory in gaseous phase. Hirshfeld surfaces and the 2D‐fingerprint analysis are performed to study the nature of interactions and their measurable contributions towards crystal packing. The interaction of the complex with DNA is investigated using viscosity measurement and absorption titration studies. The result shows the complex bind to DNA with intercalative mode with high DNA‐binding constant (Kb). Also, in vivo and in vitro cytotoxic studies are performed using S. pombe cells and brine shrimp lethality bioassay. DNA‐cleavage study shows better cleaving ability of the complex.  相似文献   

8.
A novel method for the N?N bond cleavage of trimethylsilyl diazomethane is reported for the synthesis of terminal nitride complexes. The lithium salt of trimethylsilyl diazomethane was used to generate a rare terminal nitrilimine transition metal complex with partially occupied d‐orbitals. This iron complex 2 was characterized by CHN combustion analysis, 1H and 13C NMR spectroscopic analysis, single‐crystal X‐ray crystallography, SQUID magnetometry, 57Fe Mössbauer spectroscopy, and computational analysis. The combined results suggest a high‐spin d 6 (S=2) electronic configuration and an allenic structure of the nitrilimine ligand. Reduction of 2 results in release of the nitrilimine ligand and formation of the iron(I) complex 3 , which was characterized by CHN combustion analysis, 1H NMR spectroscopic analysis, and single‐crystal X‐ray crystallography. Treatment of 2 with fluoride salts quantitatively yields the diamagnetic FeIV nitride complex 4 , with concomitant formation of cyanide and trimethylsilyl fluoride through N?N bond cleavage.  相似文献   

9.
A novel NHC–Pd complex of 1,3‐bis (4‐ethoxycarbonylphenyl) imidazolium chloride has been synthesized and characterized by 1H NMR, 13C NMR, IR and X‐ray single‐crystal diffraction studies. TG analysis shows that the NHC‐Pd complex is stable under 208 °C. The catalytic activities have been explored for the synthesis of axially chiral N‐(2′‐methoxy‐1,1′‐binaphthalen‐2‐yl) benzophenone hydrazone. The result indicates that the novel NHC‐Pd complex can achieve better catalytic activity than the Pd‐phosphine catalysts in the synthesis of axially chiral N‐(2′‐methoxy‐1,1′‐binaphthalen‐2‐yl) benzophenone hydrazone.  相似文献   

10.
Despite the large number of reported crystalline structures of coordination complexes bearing pyridines as ligands, the relevance of π–π interactions among these hereroaromatic systems in the stabilization of their supramolecular structures and properties is not very well documented in the recent literature. The title compound, [CoCl2(C5H6N2)2], was obtained as bright‐blue crystals suitable for single‐crystal X‐ray diffraction analysis from the reaction of 4‐aminopyridine with cobalt(II) chloride in ethanol. The new complex was fully characterized by a variety of spectroscopic techniques and single‐crystal X‐ray diffraction. The crystal structure showed a tetrahedral complex stabilized mainly by bidimensional motifs constructed by π–π interactions with large horizontal displacements between the 4‐aminopyridine units, and N—H…Cl hydrogen bonds. Other short contacts, such as C—H…Cl interactions, complete the three‐dimensional arrangement. The supramolecular investigation was extended by statistical studies using the Cambridge Structural Database and a Hirshfeld surface analysis.  相似文献   

11.
A complex of zinc(II) picrate (pic) with bis(N‐allylbenzimidazol‐2‐ylmethyl)aniline (abba), with composition [Zn(abba)2](pic)2, was synthesized and characterized by elemental analysis, electrical conductivity, IR and UV/Vis spectral measurements. The crystal structure of the zinc(II) complex has been determined by single‐crystal X‐ray diffraction. The Zn(II) is bonded to two abba ligands through four benzimidazole nitrogen, resulting in a distorted tetrahedron geometry. The DNA‐binding properties of the ligand and the zinc(II) complex were investigated by electronic absorption, fluorescence spectra and viscosity measurements. The experimental results suggest that the zinc(II) complex binds to DNA in an intercalation mode. In addition, the ligand abba and Zn(II) complex have scavenging effects for hydroxyl radicals and the complex shows stronger scavenging effects for hydroxyl radicals than the ligand.  相似文献   

12.
New lead(II)‐saccharin complexes, [Pb(sac)2(pym)] (1) and [Pb(sac)2(pydm)] (2) (sac = saccharinate anion; pym = 2‐pyridylmethanol; pydm = pyridine‐2, 6‐dimethanol) were synthesized and characterized by IR spectroscopy and single crystal X‐ray diffractometry. Complex 1 crystallizes in the monoclinic P21/c space group with Z = 4, while the crystals of complex 2 are extremely X‐ray sensitive and decompose by the X‐ray beam within one day. Pym and pydm act as bi‐ and tridentate ligands, respectively. Most important feature of the complexes is non‐equivalent coordination of the sac ligands to the lead(II) atom. In the complex 1 , the sac ligands coordinate to the lead(II) ion in two distinct manners. One sac ligand behaves as a bridge between the lead(II) atoms through its N and carbonyl O atoms, whereas the other sac ligand acts as a bidentate chelating ligand through its N and carbonyl O atoms which is bicoordinating and also bridges the metal atoms to achieve the seven‐coordination. The structure is built up of three‐dimensional chains formed by the bridging of the PbN3O2 units and also held intermolecular hydrogen bonds. The IR spectra of the complexes were discussed in detail.  相似文献   

13.
A cobalt σ‐alkane complex, [Co(Cy2P(CH2)4PCy2)(norbornane)][BArF4], was synthesized by a single‐crystal to single‐crystal solid/gas hydrogenation from a norbornadiene precursor, and its structure was determined by X‐ray crystallography. Magnetic data show this complex to be a triplet. Periodic DFT and electronic structure analyses revealed weak C?H→Co σ‐interactions, augmented by dispersive stabilization between the alkane ligand and the anion microenvironment. The calculations are most consistent with a η11‐alkane binding mode.  相似文献   

14.
A novel heterogeneous magnetic palladium nano‐biocatalyst was designed by utilizing Irish moss, a family of sulfated polysaccharides extracted from algae, as a natural biopolymer. This magnetic Irish moss decorated with palladium (Pd–Fe3O4@IM) to form a biomagnetic catalytic system was synthesized and well characterized by FT–IR analysis, X‐ray powder diffraction, field emission scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, atomic absorption spectroscopy and transmission electron microscopy. The catalyst was stable to air and moisture and displayed high catalytic activity in ligand‐free Suzuki–Miyaura cross‐coupling reactions conducted under green chemistry reaction conditions. The aromatic ketones are produced by the cross‐coupling reaction between acid chlorides and aryl boronic acid derivatives in high yields.  相似文献   

15.
The complex Co(C14H13NO)2Cl2 with the protonated N‐salicylidene‐p‐toluidine ligand was synthesized from an ethanolic solution of CoCl2·6H2O and N‐salicylidene‐p‐toluidine. The crystal structure was determined from X‐ray single crystal data (monoclinic, space group Cc, a = 1496.2(3) pm, b = 1257.4(4) pm, c = 1544.6(3) pm, β = 115.01(1)°, Z = 4). Co2+ adopts a distorted tetrahedral geometry. The UV‐Vis and IR spectra of the complex are discussed.  相似文献   

16.
建方方  李艳  王焕香  焦奎 《中国化学》2003,21(10):1320-1324
IntroductionTheincreasingcommercialvalueoftransitionmetalcomplexesofxanthateshasarousedconsiderableinterestintheirchemistry .Whiletheiranalyticalapplicationsarewellknown ,1theyarenowfindingextensiveuseinvulcan izationofrubber ,frothfloatationprocessforconcentrationofsulphideores ,asantioxidants ,lubricants ,2 ,3andhavebeenfoundtopossessfungicidalandinsecticidalactivi ties .4 Recently ,molecularrecognitionbetweenhostandguestmolecules ,inclusionphenomenaandnoncovalentmolecularinteractionarefunda…  相似文献   

17.
The mixed–ligand orotato (HOr)2? complex of cobalt(II) with nicotinamide (NA) [Co(HOr)(H2O)3(NA)]·3H2O was synthesized and characterized by elemental analysis, magnetic susceptibility, conductivity, spectral methods (UV–Vis and FT–IR), simultaneous TG, DTG, DTA techniques and X–ray diffraction. The complex crystallizes in the triclinic space group P–1 with unit cell parameters a = 9.320(5), b = 9.493(5), c = 10.381(5) Å, α = 77.003(5), β = 78.852(5), γ = 80.987(5)° and Z = 2. The crystal structure has indicated that the complex has been slightly distorted octahedral geometry and is chelated by the deprotonated N(3) pyrimidine ring and by the carboxylate oxygen atom of the orotate ligand. One nicotinamide molecule is also coordinated to the metal ion by the N atom of the pyridine ring. The crystal structure consists of discrete monomeric units of the complex, which are bridged via hydrogen bonding.  相似文献   

18.
A complex with eight‐coordinate lead(II ) atom and saccharinate (sac) and 2‐aminomethylpyridine ligands was characterized by IR, elemental analysis and X‐ray crystallography. The lead(II ) complex crystallizes in the monoclinic crystal system with space group P21/c. The single crystal X‐ray analysis shows that the complex is a coordination polymer, [Pb(ampy)(μ‐sac)2]n, in which the lead(II ) ions have a highly distorted bicapped trigonal antiprism coordination. Lead(II ) ions are bridged by carboxyl groups of sac forming one‐dimensional linear chains, running parallel to the a axis. The intrachain Pb···Pb distances are 4.4490(3) and 4.4679(3)Å. The individual chains are connected by N—H···Osulfonyl and Campy—H···Osulfonyl type hydrogen bonds, resulting in a three‐dimensional network. The sac ligand acts as bidentate and bridging ligand, while ampy behaves as an N, N′ donor. The IR spectra of the lead(II ) complex are discussed in detail.  相似文献   

19.
The first example of the OCPPCO ligand, diisophosphaethynolate, is reported via reductive coupling of a Sc?OCP precursor. Upon reduction with KC8, isolation of the dinuclear complex, namely [K(OEt2)]2[(nacnac)Sc(OAr)]2(OCPPCO), is observed, leading to a unique motif [OCPPCO]4?, stabilized by two scandium centers. Detailed NMR spectra of all complexes as well as IR and single crystal X‐ray studies were obtained to fully elucidate the nature of these complexes in solution as well as in the solid state. Theory is combined to probe the electronic structure and orbitals responsible for the bonding interactions in the Sc?OCPPCO?Sc skeleton but also to compare to the linear mode observed in the precursor.  相似文献   

20.
A novel mixed‐ligand complex {[Mn(azpy)2(dca)(H2O)2](ClO4)(azpy)(H2O)2}n ( 1 ) has been synthesized and characterized by single crystal X‐ray analysis, elemental analysis, IR spectroscopy and variable temperature magnetic measurement. The 4,4′‐azopyridine and dicyanamide ligands are abbreviated as azpy and dca, respectively. The crystal structure of 1 revealed that the 1D covalent bonding chains constructed by μ1,5‐dca bridging the MnII ions are linked together via O–H···N and O–H···O hydrogen bonds and ππ stacking interactions into a 3D supramolecular structure. V‐shape (bent) water trimers were also found in the structure. The water clusters play an important role in the formation of the 3D supramolecular structure. The determination of the variable temperature magnetic susceptibilities (2–300 K) shows the existence of a very weak antiferromagnetic interaction with a J value of ?0.16 cm?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号