首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Cover Image     
Pd-PEPPSI type complexes are widely used as precatalyst in a variety of organic reactions, including the Negishi, Kumada and Suzuki-Miyaura cross-coupling reactions. The aim of this research is to determine potential proposed reaction pathways 1, 2, or 2′ (See Schemes 1 and S1–S4 ) for Pd-PEPPSI precatalyst activation in the presence of ethylene glycol as a solvent also in the gas phase at Cam-B3LYP-D3 method nominated among eight DFT methods examined. There is also investigation into the impact of promoter bases (NaOEt, NaOiPr, NaOtBu) on precatalyst activation of Pd-PEPPSI. Eventually, the most favorable proposed reaction pathway and promoter base for reducing Pd(II) to Pd(0) are predicted computationally. Notably, our findings are consistent with the organ Pd-PEPPSI type complexes that offer increased catalytic activity and provide basic information in the presence of solvents designing the monoligated Pd(0)-solvent.  相似文献   

4.
Cover Image     
The novel heteronuclear complexes [{cis-PtCl (NH3)(μ-pyrazine)ZnCl (terpy)}](ClO4)2 (Pt-L1-Zn) and [{cis-PtCl (NH3)(μ-4,4′-bipyridyl)ZnCl (terpy)}](ClO4)2 (Pt-L2-Zn) (where terpy = 2,2′:6′,2′′-terpyridine, L1 = pyrazine, L2 = 4,4′-bipyridyl) were synthesized and characterized. The pKa values were determined, and based on them it was established that the π-acceptor ability of the pyrazine bridging ligand is more affective on lower pKa values. The kinetic measurements of the substitution reactions with biologically relevant ligands, such as guanosine-5′-monophosphate (5′-GMP), inosine-5′-monophosphate (5′-IMP) and glutathione (GSH), were studied at pH 7.4. The reactions were followed under pseudo-first-order conditions by UV–Vis spectrophotometry. The order of reactivity of the investigated biomolecules for the first reaction is 5′-GMP > 5′-IMP > GSH, while for the second is 5′-IMP > GSH. Pt-L1-Zn complex is more reactive than Pt-L2-Zn. The cytotoxic activity of heteronuclear Pt-L1-Zn and Pt-L2-Zn complexes was determined on human colorectal cancer cell line (HCT-116) and human breast cancer cell line (MDA-MB-231). Both complexes significantly reduced cell viability on tested cell lines and exerted significant cytotoxic effects, with better effect on HCT-116 cells than cisplatin, especially after 72 hr (IC50 < 0.52 μM). The Pt-L2-Zn complex showed higher activity against human breast cancer cells (MDA-MB-231) than cisplatin after 72 hr. The higher reactivity toward DNA constituent and significant cytotoxic activity may be attributed to the different geometry, Lewis acidity of different metal centers, as well as, to choice of bridging ligands.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
13.
Cover Image     
《Journal of Chemometrics》2016,30(5):230-230
  相似文献   

14.
Cover Image     
  相似文献   

15.
Cover Image     
  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号