首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
An efficient heterogeneous Pd catalytic system has been developed, based on immobilization of Pd nanoparticles (PNPs) on a silica‐bonded propylamine–cyanuric–cysteine (SiO2pA–Cyan–Cys) substrate. The synthesized catalyst was characterized by transmission electron microscopy, scanning electron microscopy, FT‐IR, N2 adsorption analysis (BET), TGA and inductively coupled plasma/atomic emission spectroscopy, and catalytic activity of this catalyst was investigated in the Suzuki and Sonogashira cross‐coupling reactions. The catalysts showed excellent performance in these two reactions, including various aryl halide derivatives (except aryl chloride derivatives) with phenylboronic acid and phenylacetylene under green conditions. Moreover, the catalyst was recycled for several runs without any significant loss of catalytic activity. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
To maintain catalytic performance of any catalyst for a long time, the selection of support material is a very important parameter for heterogeneous catalytic systems, and this performance makes the catalyst valuable. In view of its low cost and availability, silica can be considered as a good support material for transition metal ions in the cross coupling reactions. Therefore, this study describes i) silica-gel based palladium catalyst with a long-term catalytic performance, ii) rapid, simple, economic, and green procedure which was developed for Suzuki reactions. The catalyst showed superior reusability (ten runs) and catalytic efficiency against coupling reactions under mild conditions (50°C, 5 min and air atmosphere). Moreover, the catalyst gave partially good reaction yields with aril chlorides which have poor activity in coupling reactions. In addition, an excellent turnover number (TON: 66000) and frequency (TOF: 825000) were obtained using very small catalyst loading (1.5 × 10?3 mol %). This paper concludes that silica-gel based Pd(II) catalyst and the protocol of synthesis of biaryls were suitable for coupling reactions.  相似文献   

3.
A series of Pd(II)‐enaminone complexes, termed Pd(eao)2, have been synthesized and characterized. The investigation on the catalytic activities of these new Pd(II)‐reagents has proved that the Pd(eao)2‐ 1 possesses excellent catalytic activity for the Suzuki‐ Miyaura cross coupling reactions of aryl bromides/chlorides with aryl/vinyl boronic acids in the environmentally benign media of aqueous PEG400 at low loading (5 mol‰). The superiority of this Pd(II)‐reagent to those commercial Pd(II) and Pd(0) catalysts in catalyzing the reactions has been confirmed by parallel experiments. What's more, Pd(eao)2‐ 2 has been found as a practical catalyst for the homo‐coupling reactions of aryl boronic acids.  相似文献   

4.
Heterocyclic carbene‐Pd complex was anchored onto the mesoporous silica MCM‐41 which exhibits high catalytic activity in Heck reaction under phosphine free reaction conditions for the reaction of iodo/bromoarenes with olefinic compounds such as butyl acrylate, isopropyl acrylate and styrene. This catalytic system also showed high activity for Sonogashira coupling reaction of various aryl halides under copper, phosphine and solvent‐free reaction conditions. The air and thermally stable catalyst were reused several times without significant loss of its activity. High efficiency of the catalyst along with its recycling ability and the rather low Pd‐loading demonstrated in both Heck and Sonogashira coupling reactions are the merits of the presented catalyst system.  相似文献   

5.
In this paper, a highly active, air‐ and moisture‐stable and easily recoverable magnetic nanoparticles tethered mesoionic carbene palladium (II) complex (MNPs‐MIC‐Pd) as nanomagnetic catalyst was successfully synthesized by a simplistic multistep synthesis under aerobic conditions using commercially available inexpensive chemicals for the first time. The synthesized MNPs‐MIC‐Pd nanomagnetic catalyst was in‐depth characterized by numerous physicochemical techniques such as FT‐IR, ICP‐AES, FESEM, EDS, TEM, p‐XRD, XPS, TGA and BET surface area analysis. The prepared MNPs‐MIC‐Pd nanomagnetic catalyst was used to catalyze the Suzuki–Miyaura and Mizoroki–Heck cross‐coupling reactions and exhibited excellent catalytic activity for various substrates under mild reaction conditions. Moreover, MNPs‐MIC‐Pd nanomagnetic catalyst could be easily and rapidly recovered by applying an external magnet. The recovered MNPs‐MIC‐Pd nanomagnetic catalyst exhibited very good catalytic activity up to ten times in Suzuki–Miyaura and five times in Mizoroki–Heck cross‐coupling reactions without considerable loss of its catalytic activity. However, MNPs‐MIC‐Pd nanomagnetic catalyst shows notable advantages such as heterogeneous nature, efficient catalytic activity, mild reaction conditions, easy magnetic work up and recyclability.  相似文献   

6.
Reported here is the Pd‐catalyzed C–N coupling of hydrazine with (hetero)aryl chlorides and bromides to form aryl hydrazines with catalyst loadings as low as 100 ppm of Pd and KOH as base. Mechanistic studies revealed two catalyst resting states: an arylpalladium(II) hydroxide and arylpalladium(II) chloride. These compounds are present in two interconnected catalytic cycles and react with hydrazine and base or hydrazine alone to give the product. The selectivity of the hydroxide complex with hydrazine to form aryl over diaryl hydrazine was lower than that of the chloride complex, as well as the catalytic reaction. In contrast, the selectivity of the chloride complex closely matched that of the catalytic reaction, indicating that the aryl hydrazine is derived from this complex. Kinetic studies showed that the coupling process occurs by rate‐limiting deprotonation of a hydrazine‐bound arylpalladium(II) chloride complex to give an arylpalladium(II) hydrazido complex.  相似文献   

7.
A facile and green route for the synthesis of palladium nanoparticles (Pd‐NPs) was developed utilizing non‐toxic and renewable natural green tea extract as the reducing, stabilizing and capping agent. The as‐prepared Pd‐NPs@Oak Gum catalyst was characterized using UV–visible spectroscopy, X‐ray diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, transmission electron microscopy and energy dispersive X‐ray spectroscopy. The Pd‐NPs@Oak Gum catalyst could be used as an efficient and heterogeneous catalyst for Suzuki coupling reactions between phenylboronic acid and a range of aryl halides containing iodo, bromo and chloro moieties and also for the reduction of nitroarenes using sodium borohydride in an environmental friendly medium. Excellent yields of products were obtained with a wide range of substrates and the catalyst was recycled multiple times without any significant loss of its catalytic activity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
A facile and green route for the synthesis of palladium nanoparticles (NPs) was developed utilizing non‐toxic and renewable natural green tea extract as the reducing, stabilizing and capping agent. The as‐prepared Pd‐NPs@G.Tea extract was characterized using UV–visible spectroscopy, X‐ray diffraction, Fourier transform infrared spectroscopy, field‐emission scanning electron microscopy, transmission electron microscopy and energy‐dispersive X‐ray spectroscopy. The Pd‐NPs@G.Tea extract could be used as an efficient and heterogeneous catalyst for Suzuki coupling reactions between phenylboronic acid and a range of aryl halides containing iodo, bromo and chloro moieties, and also for the reduction of nitroarenes using sodium borohydride in an environmentally friendly medium. Excellent yields of products were obtained with a wide range of substrates and the catalyst was recycled multiple times without any significant loss of its catalytic activity.  相似文献   

9.
A new polystyrene‐anchored Pd(II) pyridine complex is synthesized and characterized. This Pd(II) pyridine complex behaves as a very efficient heterogeneous catalyst in the Heck reaction of methyl acrylate with aryl halides and the Sonogashira reaction of terminal alkynes with aryl halides in water. Furthermore, the catalyst shows good thermal stability and recyclability. This polymer‐supported Pd(II) catalyst could easily be recovered by simple filtration of the reaction mixture and reused for more than five consecutive trials without a significant loss in its catalytic activity.  相似文献   

10.
A water‐soluble, cyclodextrin‐supported palladium complex (DACH‐Pd‐β‐CD) catalytic system was designed and synthesized, which can efficiently catalyze Suzuki–Miyaura cross‐coupling reactions between aryl halides and arylboronic acid in water under mild conditions. The catalyst was successfully characterized using the methods of transmission electron microscopy, energy‐dispersive X‐ray spectrometry, X‐ray diffraction, thermogravimetric analysis, and Fourier transform infrared and NMR spectroscopies. Furthermore, the catalyst can be easily separated from the reaction mixture and still maintain high catalytic activity after ten cycles. No leaching of palladium into the reaction solution occurred. The advantages of green solvent (water), short reaction times (2–6 h), low catalyst loading (0.001 mol%), excellent yields (up to 99%) and reusability of the catalyst mean it will have potential applications in green chemical synthesis.  相似文献   

11.
An interesting silica‐supported iron catalyst was successfully prepared and demonstrated as an efficient heterogeneous catalyst for cross‐coupling reactions of aryl halides. The as‐prepared nanocatalyst was well characterized and found to be highly efficient in Heck reaction under mild and sustainable conditions (water as solvent at 80 °C in short reaction time). Furthermore, the obtained catalyst was used as an efficient, inexpensive and green heterogeneous catalyst for Sonogashira cross‐coupling reactions of various aryl iodides and provided the corresponding products with moderate to good yields. This phosphine, copper and palladium‐free catalyst was simply recovered from the reaction mixture and recycled five times without substantial decrease in its catalytic activity.  相似文献   

12.
A polymer-anchored Pd(II) Schiff base complex has been synthesized by reacting a polymeric amine with 2-pyridinecarboxaldehyde to get the polymer-anchored Schiff base, which was then reacted with palladium acetate. The catalyst was characterized by physicochemical and spectroscopic methods. It shows excellent catalytic activity in the Sonogashira coupling of phenylacetylene with aryl halides using triethylamine as a base and copper iodide as a co-catalyst in water under open air at 70 °C. We have also studied the effects of base and solvent on the coupling reaction. Sonogashira reactions of phenylacetylene with a variety of functionalized aryl halides were performed under the optimized reaction conditions. This catalyst gives excellent yields without the use of phosphine ligands. Further experiments showed that the catalyst can be used five times without much loss in the catalytic activity.  相似文献   

13.
In this study, a novel heterogeneous palladium catalyst was synthesized by anchoring palladium onto ethylenediaminetetraacetic acid (EDTA)‐coated Fe3O4@SiO2 magnetic nanocomposite and used for the Suzuki and Sonogashira cross‐coupling reactions. The properties of the magnetic catalyst were characterized by FT‐IR, XRD, TEM, FE‐SEM, DLS EDX, XPS, N2 adsorption‐desorption isotherm analysis, TGA, VSM, elemental analysis and the loading level of Pd in catalyst was measured to be 0.51 mmol/g by ICP. The catalyst was used in Suzuki cross‐coupling reactions of various aryl halides, including less reactive chlorobenzenes with phenylboronic acid without any additive or ligand under green conditions. Furthermore, we have reported this recyclable catalytic system for Sonogashira cross‐coupling reactions of various aryl halides (I, Br, Cl) under copper and ligand‐free conditions in the presence of DMF/H2O (1:2/v:v) as a solvent. The magnetic catalyst could also be separated by an external magnet and reused six times without any significant loss of activity.  相似文献   

14.
A new polystyrene anchored Pd(II) azo complex has been synthesized and characterized. The present Pd(II) azo complex behaves as a very efficient heterogeneous catalyst in the Suzuki coupling and Sonogashira coupling reaction in water medium. Aryl halides, coupled with phenylboronic acids (Suzuki-Miyaura reaction) or terminal alkyne (Sonogashira reaction), smoothly afford the corresponding cross-coupling products in excellent yields (83-100% yield for Suzuki reaction and 68-96% yield for Sonogashira reaction of aryl halides) under phosphine-free reaction conditions in the presence of polystyrene anchored Pd(II) azo complex catalyst in water medium. Furthermore, the catalyst has shown good thermal stability and recyclability. This polymer-supported Pd(II) catalyst could be easily recovered by simple filtration of the reaction mixture and reused for more than six consecutive trials without a significant loss of its catalytic activity.  相似文献   

15.
In this study, synthesis, characterization and catalytic performance of a novel supramolecular photocatalytic system including palladium (II) encapsulated within amine‐terminated poly (triazine‐triamine) dendrimer modified TiO2 nanoparticles (Pd (II) [PTATAD] @ TiO2) is presented. The obtained nanodendritic catalyst was characterized by FT‐IR, ICP‐AES, XPS, EDS, TEM, TGA and UV‐DRS. The as‐prepared nanodendritic catalyst was shown to be highly active, selective, and recyclable for the Suzuki–Miyaura and Sonogashira cross‐coupling of a wide range of aryl halides including electron‐rich and electron‐poor and even aryl chlorides, affording the corresponding biaryl compounds in good to excellent yields under visible light irradiation. This study shows that visible light irradiation can drive the cross‐coupling reactions on the Pd (II) [PTATAD] @ TiO2 under mild reaction conditions (27–30 °C) and no additional additives such as cocatalysts or phosphine ligands. So, we propose that the improved photoactivity predominantly benefits from the synergistic effects of Pd (II) amine‐terminated poly (triazine‐triamine) dendrimer on TiO2 nanoparticles that cause efficient separation and photogenerated electron–hole pairs and photoredox capability of nanocatalyst which all of these advantages due to the tuning of band gap of catalyst in the visible light region.  相似文献   

16.
Fuberidazole has been successfully immobilized onto nano-Fe3O4 supported (3-chloropropyl)trimethoxysilane (3-CPTS) leading to a novel functionalized magnetic nanoparticle (FB/MNP). The Pd(0) complex, Pd-FB/MNP, was prepared by grafting Pd (OAc)2 on FB/MNP and subsequent reduction of a synthesized Pd (II) complex using NaBH4. Pd-FB/MNP has been characterized by FT-IR, SEM, TGA, XRD, ICP, EDS, BET and VSM. The Pd(0) complex proved to be an efficient phosphine- and halide-free recyclable heterogeneous catalyst for Suzuki as well as for Stille C-C coupling reactions showing high catalytic activity (up to 98%). Its catalytic activity in both reactions has been studied in PEG-400 as a green solvent. Besides, the selectivity of aryl iodide and aryl bromide over aryl chloride is observed during the C-C coupling reaction. The catalyst could be recovered easily from the reaction mixture using an external magnet device and recycled several times without considerable loss in activity. Additionally, the results of a palladium leaching test of the nano-catalyst demonstrate that no leaching of Pd took place during the C-C coupling process making the procedure environmentally friendly.  相似文献   

17.
The Suzuki coupling of aryl chlorides with boronic acids using a ferrocene-containing Pd(II)–diimine complex as catalyst, in aqueous media, under microwave heating is reported. A small amount of the catalyst (0.1%) was found to be highly effective for coupling unactivated aryl chlorides with boronic acids to form sterically hindered ortho-substituted biaryls. The same catalyst also enabled the coupling of aryl bromides and iodides with various boronic acids in very high yields. The catalyst is air stable and the catalytic reaction can be completed in 15 min.  相似文献   

18.
A novel heterogeneous magnetic palladium nano‐biocatalyst was designed by utilizing Irish moss, a family of sulfated polysaccharides extracted from algae, as a natural biopolymer. This magnetic Irish moss decorated with palladium (Pd–Fe3O4@IM) to form a biomagnetic catalytic system was synthesized and well characterized by FT–IR analysis, X‐ray powder diffraction, field emission scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, atomic absorption spectroscopy and transmission electron microscopy. The catalyst was stable to air and moisture and displayed high catalytic activity in ligand‐free Suzuki–Miyaura cross‐coupling reactions conducted under green chemistry reaction conditions. The aromatic ketones are produced by the cross‐coupling reaction between acid chlorides and aryl boronic acid derivatives in high yields.  相似文献   

19.
A nano tetraimine Pd(0) complex catalyst was successfully used as an efficient heterogeneous catalyst for the phosphine‐free palladium‐catalysed Suzuki coupling reaction in water at 80 °C. This nano tetraimine Pd(0) complex was also used for copper‐free Sonogashira reaction in dimethylformamide at 100 °C. The catalyst was easily recovered from the reaction mixture by centrifugation and reused for at least six cycles without any significant loss in its catalytic activity. Analysis of the reaction mixture using inductively coupled plasma analysis showed that leaching of palladium from the catalyst was negligible. The reactions can be performed efficiently for aryl iodides, bromides and also chlorides. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
Palladium-catalyzed reactions of aryl bromides with various olefins involving Pd(II)/diazabutadiene (DAB-R) systems have been investigated. The scope of a coupling process using Pd(II) sources and an α-diimine as ligand in the presence of Cs2CO3 as base was tested using various substrates. The Pd(OAc)2/DAB-Cy (1, DAB-Cy=1,4-dicyclohexyl-diazabutadiene) system presents the highest activity with respect to electron-neutral and electron-deficient aryl bromides in coupling with electron rich olefins. The synthesis and X-ray characterization of a Pd(II)-diazabutadiene ligand is reported. Extensive optimization experiments showed that another Pd(II) source, Pd(acac)2 (acac=acetylacetonate), proved to activate aryl bromides at high temperatures, low catalyst loadings when the appropriate concentration of nBu4NBr additive was employed. The effect of the DAB-Cy ligand is important at very low catalyst loadings and high temperatures. Pd(acac)2 and Pd(acac)2/DAB-Cy precatalysts were very effective for the arylation of various olefins with aryl bromides with respect to reaction rate, catalyst loadings, and functional group tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号