首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multigrid for the mortar element method for P1 nonconforming element   总被引:7,自引:0,他引:7  
In this paper, a multigrid algorithm is presented for the mortar element method for P1 nonconforming element. Based on the theory developed by Bramble, Pasciak, Xu in [5], we prove that the W-cycle multigrid is optimal, i.e. the convergence rate is independent of the mesh size and mesh level. Meanwhile, a variable V-cycle multigrid preconditioner is constructed, which results in a preconditioned system with uniformly bounded condition number. Received May 11, 1999 / Revised version received April 1, 2000 / Published online October 16, 2000  相似文献   

2.
A finite-element capacitance matrix method for exterior Helmholtz problems   总被引:1,自引:0,他引:1  
Summary. We introduce an algorithm for the efficient numerical solution of exterior boundary value problems for the Helmholtz equation. The problem is reformulated as an equivalent one on a bounded domain using an exact non-local boundary condition on a circular artificial boundary. An FFT-based fast Helmholtz solver is then derived for a finite-element discretization on an annular domain. The exterior problem for domains of general shape are treated using an imbedding or capacitance matrix method. The imbedding is achieved in such a way that the resulting capacitance matrix has a favorable spectral distribution leading to mesh independent convergence rates when Krylov subspace methods are used to solve the capacitance matrix equation. Received May 2, 1995  相似文献   

3.
In this work we deal with universal Taylor series in the open unit disk, in the sense of Nestoridis; see [12]. Such series are not (C,k) summable at every boundary point for every k; see [7], [11]. In the opposite direction, using approximation theorems of Arakeljan and Nersesjan we prove that universal Taylor series can be Abel summable at some points of the unit circle; these points can form any closed nowhere dense subset of the unit circle.  相似文献   

4.
Summary. We derive sufficient conditions under which the cascadic multi-grid method applied to nonconforming finite element discretizations yields an optimal solver. Key ingredients are optimal error estimates of such discretizations, which we therefore study in detail. We derive a new, efficient modified Morley finite element method. Optimal cascadic multi-grid methods are obtained for problems of second, and using a new smoother, of fourth order as well as for the Stokes problem. Received February 12, 1998 / Revised version received January 9, 2001 / Published online September 19, 2001  相似文献   

5.
In this paper we consider second order scalar elliptic boundary value problems posed over three–dimensional domains and their discretization by means of mixed Raviart–Thomas finite elements [18]. This leads to saddle point problems featuring a discrete flux vector field as additional unknown. Following Ewing and Wang [26], the proposed solution procedure is based on splitting the flux into divergence free components and a remainder. It leads to a variational problem involving solenoidal Raviart–Thomas vector fields. A fast iterative solution method for this problem is presented. It exploits the representation of divergence free vector fields as s of the –conforming finite element functions introduced by Nédélec [43]. We show that a nodal multilevel splitting of these finite element spaces gives rise to an optimal preconditioner for the solenoidal variational problem: Duality techniques in quotient spaces and modern algebraic multigrid theory [50, 10, 31] are the main tools for the proof. Received November 4, 1996 / Revised version received February 2, 1998  相似文献   

6.
Summary. A preconditioner, based on a two-level mesh and a two-level orthogonalization, is proposed for the - version of the finite element method for two dimensional elliptic problems in polygonal domains. Its implementation is in parallel on the subdomain level for the linear or bilinear (nodal) modes, and in parallel on the element level for the high order (side and internal) modes. The condition number of the preconditioned linear system is of order , where is the diameter of the -th subdomain, and are the diameter of elements and the maximum polynomial degree used in the subdomain. This result reduces to well-known results for the -version (i.e. ) and the -version (i.e. ) as the special cases of the - version. Received August 15, 1995 / Revised version received November 13, 1995  相似文献   

7.
Summary. In recent years, it has been shown that many modern iterative algorithms (multigrid schemes, multilevel preconditioners, domain decomposition methods etc.) for solving problems resulting from the discretization of PDEs can be interpreted as additive (Jacobi-like) or multiplicative (Gauss-Seidel-like) subspace correction methods. The key to their analysis is the study of certain metric properties of the underlying splitting of the discretization space into a sum of subspaces and the splitting of the variational problem on into auxiliary problems on these subspaces. In this paper, we propose a modification of the abstract convergence theory of the additive and multiplicative Schwarz methods, that makes the relation to traditional iteration methods more explicit. The analysis of the additive and multiplicative Schwarz iterations can be carried out in almost the same spirit as in the traditional block-matrix situation, making convergence proofs of multilevel and domain decomposition methods clearer, or, at least, more classical. In addition, we present a new bound for the convergence rate of the appropriately scaled multiplicative Schwarz method directly in terms of the condition number of the corresponding additive Schwarz operator. These results may be viewed as an appendix to the recent surveys [X], [Ys]. Received February 1, 1994 / Revised version received August 1, 1994  相似文献   

8.
The cascadic multigrid method for elliptic problems   总被引:23,自引:0,他引:23  
Summary. The paper deals with certain adaptive multilevel methods at the confluence of nested multigrid methods and iterative methods based on the cascade principle of [10]. From the multigrid point of view, no correction cycles are needed; from the cascade principle view, a basic iteration method without any preconditioner is used at successive refinement levels. For a prescribed error tolerance on the final level, more iterations must be spent on coarser grids in order to allow for less iterations on finer grids. A first candidate of such a cascadic multigrid method was the recently suggested cascadic conjugate gradient method of [9], in short CCG method, whichused the CG method as basic iteration method on each level. In [18] it has been proven, that the CCG method is accurate with optimal complexity for elliptic problems in 2D and quasi-uniform triangulations. The present paper simplifies that theory and extends it to more general basic iteration methods like the traditional multigrid smoothers. Moreover, an adaptive control strategy for the number of iterations on successive refinement levels for possibly highly non-uniform grids is worked out on the basis of a posteriori estimates. Numerical tests confirm the efficiency and robustness of the cascadic multigrid method. Received November 12, 1994 / Revised version received October 12, 1995  相似文献   

9.
Summary. We discuss a finite difference preconditioner for the interpolatory cubic spline collocation method for a uniformly elliptic operator defined by in (the unit square) with homogeneous Dirichlet boundary conditions. Using the generalized field of values arguments, we discuss the eigenvalues of the preconditioned matrix where is the matrix of the collocation discretization operator corresponding to , and is the matrix of the finite difference operator corresponding to the uniformly elliptic operator given by in with homogeneous Dirichlet boundary conditions. Finally we mention a bound of -singular values of for a general elliptic operator in . Received December 11, 1995 / Revised version received June 20, 1996  相似文献   

10.
Summary. This paper is concerned with the convergence analysis of robust multigrid methods for convection-diffusion problems. We consider a finite difference discretization of a 2D model convection-diffusion problem with constant coefficients and Dirichlet boundary conditions. For the approximate solution of this discrete problem a multigrid method based on semicoarsening, matrix-dependent prolongation and restriction and line smoothers is applied. For a multigrid W-cycle we prove an upper bound for the contraction number in the euclidean norm which is smaller than one and independent of the mesh size and the diffusion/convection ratio. For the contraction number of a multigrid V-cycle a bound is proved which is uniform for a class of convection-dominated problems. The analysis is based on linear algebra arguments only. Received April 26, 2000 / Published online June 20, 2001  相似文献   

11.
Summary. Using the theory of nonnegative matrices and regular splittings, exact convergence and divergence domains of the Unsymmetric Successive Overrelaxation (USSOR) method, as it pertains to the class of Generalized Consistently Ordered (GCO) matrices, are determined. Our recently derived upper bounds, for the convergence of the USSOR method, re also used as effective tools. Received October 17, 1993 / Revised version received December 19, 1994  相似文献   

12.
Summary. An additive Schwarz iteration is described for the fast resolution of linear ill-posed problems which are stabilized by Tikhonov regularization. The algorithm and its analysis are presented in a general framework which applies to integral equations of the first kind discretized either by spline functions or Daubechies wavelets. Numerical experiments are reported on to illustrate the theoretical results and to compare both discretization schemes. Received March 6, 1995 / Revised version received December 27, 1995  相似文献   

13.
Summary. We derive analytic bounds on the convergence factors associated with block relaxation methods for solving the discrete two-dimensional convection-diffusion equation. The analysis applies to the reduced systems derived when one step of block Gaussian elimination is performed on red-black ordered two-cyclic discretizations. We consider the case where centered finite difference discretization is used and one cell Reynolds number is less than one in absolute value and the other is greater than one. It is shown that line ordered relaxation exhibits very fast rates of convergence. Received March 3, 1992/Revised version received July 2, 1993  相似文献   

14.
Summary. Recently, Benzi and Szyld have published an important paper [1] concerning the existence and uniqueness of splittings for singular matrices. However, the assertion in Theorem 3.9 on the inheriting property of P-regular splitting for singular symmetric positive semidefinite matrices seems to be incorrect. As a complement of paper [1], in this short note we point out that if a matrix T is resulted from a P-regular splitting of a symmetric positive semidefinite matrix A, then splittings induced by T are not all P-regular. Received January 7, 1999 / Published online December 19, 2000  相似文献   

15.
This paper addresses the issue of breakdowns in the block GMRES method for solving linear systems with multiple right-hand sides of the form AX = B. An exact (inexact) breakdown occurs at iteration j of this method when the block Krylov matrix (BAB, … , Aj−1B) is singular (almost singular). Exact breakdowns are the sign that a part of the exact solution is in the range of the Krylov matrix. They are primarily of theoretical interest. From a computational point of view, inexact breakdowns are most likely to occur. In such cases, the underlying block Arnoldi process that is used to build the block Krylov space should not be continued as usual. A natural way to continue the process is the use of deflation. However, as shown by Langou [J. Langou, Iterative Methods for Solving Linear Systems with Multiple Right-Hand Sides, Ph.D. dissertation TH/PA/03/24, CERFACS, France, 2003], deflation in block GMRES may lead to a loss of information that slows down the convergence. In this paper, instead of deflating the directions associated with almost converged solutions, these are kept and reintroduced in next iterations if necessary. Two criteria to detect inexact breakdowns are presented. One is based on the numerical rank of the generated block Krylov basis, the second on the numerical rank of the residual associated to approximate solutions. These criteria are analyzed and compared. Implementation details are discussed. Numerical results are reported.  相似文献   

16.
Summary. The Schur complement of a model problem is considered as a preconditioner for the Uzawa type schemes for the generalized Stokes problem (the Stokes problem with the additional term in the motion equation). The implementation of the preconditioned method requires for each iteration only one extra solution of the Poisson equation with Neumann boundary conditions. For a wide class of 2D and 3D domains a theorem on its convergence is proved. In particular, it is established that the method converges with a rate that is bounded by some constant independent of . Some finite difference and finite element methods are discussed. Numerical results for finite difference MAC scheme are provided. Received May 2, 1997 / Revised version received May 10, 1999 / Published online May 8, 2000  相似文献   

17.
Summary. We present new theoretical results on two classes of multisplitting methods for solving linear systems iteratively. These classes are based on overlapping blocks of the underlying coefficient matrix which is assumed to be a band matrix. We show that under suitable conditions the spectral radius of the iteration matrix does not depend on the weights of the method even if these weights are allowed to be negative. For a certain class of splittings we prove an optimality result for with respect to the weights provided that is an M–matrix. This result is based on the fact that the multisplitting method can be represented by a single splitting which in our situation surprisingly turns out to be a regular splitting. Furthermore we show by numerical examples that weighting factors may considerably improve the convergence. Received July 18, 1994 / Revised version received November 20, 1995  相似文献   

18.
Summary. The Generalized Conjugate Gradient method (see [1]) is an iterative method for nonsymmetric linear systems. We obtain generalizations of this method for nonlinear systems with nonsymmetric Jacobians. We prove global convergence results. Received April 29, 1992 / Revised version received November 18, 1993  相似文献   

19.
Summary. Hybrid methods for the solution of systems of linear equations consist of a first phase where some information about the associated coefficient matrix is acquired, and a second phase in which a polynomial iteration designed with respect to this information is used. Most of the hybrid algorithms proposed recently for the solution of nonsymmetric systems rely on the direct use of eigenvalue estimates constructed by the Arnoldi process in Phase I. We will show the limitations of this approach and propose an alternative, also based on the Arnoldi process, which approximates the field of values of the coefficient matrix and of its inverse in the Krylov subspace. We also report on numerical experiments comparing the resulting new method with other hybrid algorithms. Received May 27, 1993 / Revised version received November 14, 1994  相似文献   

20.
Summary. The tangential frequency filtering decomposition (TFFD) is introduced. The convergence theory of an iterative scheme based on the TFFD for symmetric matrices is the focus of this paper. The existence of the TFFD and the convergence of the induced iterative algorithm is shown for symmetric and positive definite matrices. Convergence rates independent of the number of unknowns are proven for a smaller class of matrices. Using this framework, the convergence independent of the number of unknowns is shown for Wittum's frequency filtering decomposition. Some characteristic properties of the TFFD are illustrated and results of several numerical experiments are presented. Received April 1, 1996 / Revised version July 4, 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号