Adhesion of immiscible polymers during two‐component injection moulding may be improved by transreactions of properly functionalised components. We performed MC simulations based on the three‐dimensional coarse‐grained bond fluctuation model (BFM) including a thermal interaction potential in with energy to characterise the behaviour of several selected types of chemical reactions, which are governed by activation energies of EA = 0, 1, 3 and 5 kBT. The consumption of reactive monomers for all the reactions in the time interval below the Rouse time τR exhibits a typical crossover from a kinetic‐controlled to a diffusion‐controlled behaviour and can be described by a bimolecular kinetic ansatz.
We developed an analytical solution to describe how the CLD of polymers made with coordination polymerization catalysts vary as a function of time for very short polymerization times before the CLD becomes completely developed. We compared the analytical solution with a dynamic Monte Carlo model for validation, obtaining excellent agreement. Our analytical solution can be used to determine when the steady‐state hypothesis, commonly used in polymerization models, becomes valid as a function of polymer chain length. We also extended our model to describe polymerization with multiple‐site‐type catalysts. Depending on the polymerization kinetic parameters of the different site types on the catalyst, the fully developed CLD is reached through very different intermediate CLDs. This modeling approach, although rather simplified, can be used to interpret results from short polymerization time experiments such as the ones done in stopped‐flow reactors.